Spaces:
Runtime error
Runtime error
File size: 11,179 Bytes
38a48ce e73ff54 38a48ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import streamlit as st
import pandas as pd
import os
from langchain_core.prompts import PromptTemplate
import json
from langchain_openai import ChatOpenAI
import evaluate
from typing import List, Dict
from prompts_v1 import *
import tempfile
from langchain_groq import ChatGroq
import os
os.environ["OPENAI_API_KEY"] = os.getenv('OPENAI_API_KEY')
os.environ["GROQ_API_KEY"]= os.getenv('GROQ_API_KEY')
# Configure page settings
st.set_page_config(
page_title="RAG Evaluator",
page_icon="📊",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS for better UI
st.markdown("""
<style>
.stApp {
max-width: 1200px;
margin: 0 auto;
}
.metric-box {
background-color: #f0f2f6;
border-radius: 10px;
padding: 20px;
margin: 10px 0;
}
</style>
""", unsafe_allow_html=True)
# Initialize session state
if 'evaluation_results' not in st.session_state:
st.session_state.evaluation_results = None
class RAGEvaluator:
def __init__(self):
#self.llm = ChatGroq(model="llama-3.1-70b-versatile", temperature=0.2)
self.llm = ChatOpenAI(temperature=0.7, model="gpt-3.5-turbo")
self.eval_prompts = {
"diversity_metrics": diversity_metrics,
"creativity_metric": creativity_metric,
"groundedness_metric": groundedness_metric,
"coherence_metric": coherence_metric,
"pointwise_metric":pointwise_metric,
# "pairwise_metric":pairwise_metric
}
def evaluate_custom_metrics(self, df: pd.DataFrame, selected_metrics: List[str]) -> pd.DataFrame:
for metric in selected_metrics:
prompt = self.eval_prompts.get(metric)
if not prompt:
continue
review_template = PromptTemplate.from_template(prompt)
eval_score = []
explanation = []
progress_bar = st.progress(0)
for idx in range(len(df)):
progress = (idx + 1) / len(df)
progress_bar.progress(progress)
question = df["question"][idx]
answer = df["answer"][idx]
context = df["context"][idx]
final_prompt = review_template.format(
question=question,
answer=answer,
context=context
)
response = self.llm.invoke(final_prompt).content
data_dict = json.loads(response)
eval_score.append(data_dict["eval_score"])
explanation.append(data_dict["explanation"])
df[f"{metric}_score"] = eval_score
df[f"{metric}_explanation"] = explanation
progress_bar.empty()
return df
def evaluate_traditional_metrics(self, df: pd.DataFrame, selected_metrics: List[str]) -> pd.DataFrame:
if "BLEU" in selected_metrics:
bleu = evaluate.load('bleu')
scores = []
for _, row in df.iterrows():
score = bleu.compute(
predictions=[row['answer']],
references=[row['context']],
max_order=2
)
scores.append(score['bleu'])
df['bleu_score'] = scores
if "ROUGE" in selected_metrics:
rouge = evaluate.load("rouge")
rouge1_scores = []
rouge2_scores = []
rougeL_scores = []
for _, row in df.iterrows():
scores = rouge.compute(
predictions=[row['answer']],
references=[row['context']],
rouge_types=['rouge1', 'rouge2', 'rougeL']
)
rouge1_scores.append(scores['rouge1'])
rouge2_scores.append(scores['rouge2'])
rougeL_scores.append(scores['rougeL'])
df['rouge1_score'] = rouge1_scores
df['rouge2_score'] = rouge2_scores
df['rougeL_score'] = rougeL_scores
if "Perplexity" in selected_metrics:
try:
perplexity = evaluate.load("perplexity", module_type="metric")
scores = []
for _, row in df.iterrows():
try:
score = perplexity.compute(
model_id="gpt2",
add_start_token=False,
predictions=[row['answer']]
)
scores.append(score['mean_perplexity'])
except KeyError:
# If mean_perplexity is not available, try perplexity
scores.append(score.get('perplexity', 0))
except Exception as e:
st.warning(f"Skipping perplexity calculation for one row due to: {str(e)}")
scores.append(0)
df['perplexity_score'] = scores
except Exception as e:
st.error(f"Error calculating perplexity: {str(e)}")
df['perplexity_score'] = [0] * len(df)
return df
def main():
st.title("🎯 RAG Evaluator")
st.write("Upload your data and select evaluation metrics to analyze your RAG system's performance.")
# Sidebar configuration
st.sidebar.header("Configuration")
# File upload
uploaded_file = st.sidebar.file_uploader(
"Upload your evaluation data (CSV/Excel)",
type=['csv', 'xlsx']
)
# Metric selection
st.sidebar.subheader("Select Evaluation Metrics")
custom_metrics = st.sidebar.expander("Custom Metrics", expanded=True)
selected_custom_metrics = custom_metrics.multiselect(
"Choose custom metrics:",
["diversity_metrics", "creativity_metric", "groundedness_metric", "coherence_metric","pointwise_metric"],
default=["coherence_metric"]
)
traditional_metrics = st.sidebar.expander("Traditional Metrics", expanded=True)
selected_traditional_metrics = traditional_metrics.multiselect(
"Choose traditional metrics:",
["BLEU", "ROUGE", "Perplexity"],
default=["BLEU"]
)
if uploaded_file is not None:
try:
# Read the uploaded file
if uploaded_file.name.endswith('.csv'):
df = pd.read_csv(uploaded_file)
else:
df = pd.read_excel(uploaded_file)
# Display data preview
st.subheader("📊 Data Preview")
st.dataframe(df.head(), use_container_width=True)
# Initialize evaluator
evaluator = RAGEvaluator()
# Evaluation button
if st.button("🚀 Start Evaluation", type="primary"):
with st.spinner("Evaluating..."):
# Perform evaluations
if selected_custom_metrics:
df = evaluator.evaluate_custom_metrics(df, selected_custom_metrics)
if selected_traditional_metrics:
df = evaluator.evaluate_traditional_metrics(df, selected_traditional_metrics)
st.session_state.evaluation_results = df
# Save results
with tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp:
df.to_excel(tmp.name, index=False)
st.download_button(
label="📥 Download Results",
data=open(tmp.name, 'rb'),
file_name="rag_evaluation_results.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
# Display results if available
if st.session_state.evaluation_results is not None:
st.subheader("📈 Evaluation Results")
# Create tabs for different result views
tab1, tab2 = st.tabs(["📊 Metrics Overview", "📝 Detailed Results"])
with tab1:
# Display metric summaries
cols = st.columns(len(selected_custom_metrics) + len(selected_traditional_metrics))
metric_idx = 0
for metric in selected_custom_metrics:
with cols[metric_idx]:
avg_score = st.session_state.evaluation_results[f"{metric}_score"].mean()
st.metric(
label=metric.replace('_', ' ').title(),
value=f"{avg_score:.2f}"
)
metric_idx += 1
if "BLEU" in selected_traditional_metrics:
with cols[metric_idx]:
avg_bleu = st.session_state.evaluation_results['bleu_score'].mean()
st.metric(label="BLEU Score", value=f"{avg_bleu:.2f}")
metric_idx += 1
if "ROUGE" in selected_traditional_metrics:
with cols[metric_idx]:
avg_rouge = st.session_state.evaluation_results['rouge1_score'].mean()
st.metric(label="ROUGE-1 Score", value=f"{avg_rouge:.2f}")
metric_idx += 1
if "Perplexity" in selected_traditional_metrics:
with cols[metric_idx]:
avg_rouge = st.session_state.evaluation_results['perplexity_score'].mean()
st.metric(label="perplexity Score", value=f"{avg_rouge:.2f}")
metric_idx += 1
with tab2:
st.dataframe(
st.session_state.evaluation_results,
use_container_width=True,
height=400
)
except Exception as e:
st.error(f"An error occurred: {str(e)}")
else:
# Display welcome message and instructions
st.info("👈 Please upload your evaluation data file (CSV/Excel) from the sidebar to begin.")
# Display sample format
st.subheader("📋 Expected Data Format")
sample_data = pd.DataFrame({
'question': ['What is RAG?', 'How does RAG work?'],
'answer': ['RAG is...', 'RAG works by...'],
'context': ['RAG (Retrieval-Augmented Generation)...', 'The RAG process involves...']
})
st.dataframe(sample_data, use_container_width=True)
if __name__ == "__main__":
main() |