import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load the model and tokenizer model_name = "google/gemma-2b-it" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Define the chatbot function def chatbot(input_text): inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(inputs.input_ids, max_length=100, num_return_sequences=1) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response # Create the Gradio interface iface = gr.Interface( fn=chatbot, inputs="text", outputs="text", title="AI Chatbot", description="A chatbot using the google/gemma-2b-it model." ) # Launch the app if __name__ == "__main__": iface.launch()