File size: 2,820 Bytes
168da77 06de88f bfd4b05 d364219 168da77 d364219 5659ce7 69eca47 5659ce7 d364219 cb6f09d d364219 5659ce7 d364219 cb6f09d 168da77 30132a4 168da77 d364219 debb687 482857a d364219 5659ce7 d364219 5659ce7 debb687 5659ce7 d364219 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
import torch
import gradio as gr
from transformers import TextIteratorStreamer, AutoProcessor, LlavaForConditionalGeneration
from PIL import Image
import threading
import spaces
import accelerate
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">Krypton π</h1>
<p>This uses an Open Source model from <a href="https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers"><b>xtuner/llava-llama-3-8b-v1_1-transformers</b></a></p>
</div>
'''
model_id = "xtuner/llava-llama-3-8b-v1_1-transformers"
model = LlavaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True
).to('cuda')
processor = AutoProcessor.from_pretrained(model_id)
model.generation_config.eos_token_id = 128009
@spaces.GPU(duration=120)
def krypton(input,
history):
"""
Recieves inputs (prompts with images if they were added),
the image is formated for pil and prompt is formated for the model,
to place it's output to the user, these prompts and images are passed in
the processor and generation of the model, than the output is decoded from the processor,
onto the UI.
"""
if input["files"]:
if type(input["files"][-1]) == dict:
image = input["files"][-1]["path"]
else:
image = input["files"][-1]
else:
# If no images were passed now, look at the past images to keep up as reference still to the prompts
# kept inside in tuples, the last one
for hist in history:
if type(hist[0]) == tuple:
image = hist[0][0]
try:
if image is None:
gr.Error("You need to upload an image please for krypton to work.")
except NameError:
# Image is not defined at all
gr.Error("Uplaod an image for Krypton to work")
image = Image.open(image)
# image = Image.open(requests.get(url, stream=True).raw)
prompt = ("<|start_header_id|>user<|end_header_id|>\n\n<image>\n{input['text']}<|eot_id|>"
"<|start_header_id|>assistant<|end_header_id|>\n\n")
inputs = processor(prompt, image, return_tensors='pt').to('cuda', torch.float16)
outputs = model.generate(**inputs, max_new_tokens=200, do_sample=False)
output_text = processor.decode(outputs[0], skip_special_tokens=True)
print(output_text)
return output_text
chatbot=gr.Chatbot(height=600, label="Krypt AI")
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter your question or upload an image.", show_label=False)
with gr.Blocks(fill_height=True) as demo:
gr.Markdown(DESCRIPTION)
gr.ChatInterface(
fn=krypton,
chatbot=chatbot,
fill_height=True,
multimodal=True,
textbox=chat_input,
)
if __name__ == "__main__":
demo.launch()
|