CatalystGPT-4 / granite_model.py
sandylolpotty's picture
Create granite_model.py
ac68caa verified
# Example of how to integrate the granite_model.py into your main app.py
# At the top of your app.py, add this import:
# Use a pipeline as a high-level helper
from transformers import pipeline
pipe = pipeline("text-generation", model="ibm-granite/granite-3.3-8b-instruct")
messages = [
{"role": "user", "content": "Who are you?"},
]
pipe(messages)
try:
from granite_model import GraniteModelIntegration
GRANITE_AVAILABLE = True
except ImportError:
GRANITE_AVAILABLE = False
logger.warning("granite_model.py not found. Granite features will be disabled.")
# In your AdvancedDocumentSummarizer.__init__ method, add:
def __init__(self):
self.summarizer = None
self.sentiment_analyzer = None
self.granite_integration = None # Add this line
self.cache = {}
# Initialize AI models
if TRANSFORMERS_AVAILABLE:
self._initialize_ai_models()
# Initialize Granite integration
if GRANITE_AVAILABLE:
try:
self.granite_integration = GraniteModelIntegration()
logger.info(f"Granite integration status: {'Available' if self.granite_integration.is_available() else 'Not Available'}")
except Exception as e:
logger.warning(f"Failed to initialize Granite integration: {e}")
# Initialize sentiment analyzer
if NLTK_AVAILABLE:
try:
self.sentiment_analyzer = SentimentIntensityAnalyzer()
except Exception as e:
logger.warning(f"Failed to initialize sentiment analyzer: {e}")
# Add these methods to your AdvancedDocumentSummarizer class:
def granite_enhanced_summary(self, text: str, summary_type: str = "medium") -> str:
"""Generate enhanced summary using Granite model"""
if not (self.granite_integration and self.granite_integration.is_available()):
return self.advanced_extractive_summary(text)
return self.granite_integration.generate_summary(text, summary_type)
def granite_analyze_document(self, text: str) -> Dict:
"""Use Granite model for advanced document analysis"""
if not (self.granite_integration and self.granite_integration.is_available()):
return {'analysis_available': False}
result = self.granite_integration.analyze_document(text)
return {
'granite_analysis': result.get('analysis', 'Analysis failed'),
'analysis_available': result.get('success', False),
'model_used': result.get('model_used', 'Unknown')
}
def granite_generate_questions(self, text: str, num_questions: int = 5) -> list:
"""Generate comprehension questions using Granite"""
if not (self.granite_integration and self.granite_integration.is_available()):
return []
return self.granite_integration.generate_questions(text, num_questions)
# In your process_document method, update the summary generation part:
# Generate summary - prioritize Granite if available for AI mode
if summary_type == "ai":
if self.granite_integration and self.granite_integration.is_available():
summary = self.granite_enhanced_summary(text, summary_length)
elif self.summarizer:
summary = self.ai_summary(text, params["max_length"], params["min_length"])
else:
summary = self.advanced_extractive_summary(text, params["sentences"])
else:
summary = self.advanced_extractive_summary(text, params["sentences"])
# Get Granite analysis and questions if available
granite_analysis = self.granite_analyze_document(text)
granite_questions = self.granite_generate_questions(text, 5)
# Add to result dictionary:
result = {
'original_text': text[:2000] + "..." if len(text) > 2000 else text,
'full_text_length': len(text),
'summary': summary,
'key_points': key_points,
'outline': outline,
'stats': stats,
'granite_analysis': granite_analysis,
'granite_questions': granite_questions, # Add this
'readability_score': readability_score,
'file_name': Path(file_path).name,
'file_size': os.path.getsize(file_path),
'processing_time': datetime.now().isoformat(),
'summary_type': summary_type,
'summary_length': summary_length,
'model_used': 'Granite 3.2 8B' if (summary_type == "ai" and self.granite_integration and self.granite_integration.is_available()) else ('AI (BART/T5)' if self.summarizer else 'Extractive')
}
# In your UI section, add the questions display:
# Add Granite questions if available
granite_questions_html = ""
if result.get("granite_questions"):
questions_list = "".join([f"<li style='margin-bottom: 10px; padding: 8px; background: rgba(255,255,255,0.1); border-radius: 6px;'>{q}</li>"
for q in result["granite_questions"]])
granite_questions_html = f'''
<div style="background: linear-gradient(135deg, #11998e 0%, #38ef7d 100%); color: white; padding: 20px; border-radius: 12px; margin: 15px 0; box-shadow: 0 6px 20px rgba(0,0,0,0.1);">
<h3>AI-Generated Questions</h3>
<p style="margin-bottom: 15px; opacity: 0.9;">Test your understanding with these Granite-generated questions:</p>
<ol style="padding-left: 20px; line-height: 1.6;">
{questions_list}
</ol>
</div>
'''
# Update your system status display:
**Granite 3.2 8B:** {"✅ Available" if (GRANITE_AVAILABLE and hasattr(summarizer, 'granite_integration') and summarizer.granite_integration and summarizer.granite_integration.is_available()) else "❌ Not Available"}