import streamlit as st from transformers import pipeline from PIL import Image from datasets import load_dataset, Image, list_datasets from PIL import Image MODELS = [ "google/vit-base-patch16-224", #Classifição geral "nateraw/vit-age-classifier" #Classifição de idade ] DATASETS = [ "Nunt/testedata", "Nunt/backup_leonardo_2024-02-01" ] MAX_N_LABELS = 5 SPLIT_TO_CLASSIFY = 'pasta' COLS = st.columns([0.75, 0.25]) SCROLLABLE_TEXT = COLS[1].container(height=500) def classify_full_dataset(shosen_dataset_name, chosen_model_name): image_count = 0 for i in range(len(dataset)): image_object = dataset['pasta'][i]["image"] SCROLLABLE_TEXT.image(image_object, caption="Uploaded Image", width=300) #dataset dataset = load_dataset(shosen_dataset_name,"testedata_readme") #Image teste load image_object = dataset['pasta'][0]["image"] SCROLLABLE_TEXT.image(image_object, caption="Uploaded Image", width=300) #modle instance classifier_pipeline = pipeline('image-classification', model=chosen_model_name) #classification classification_result = classifier_pipeline(image_object) SCROLLABLE_TEXT.write(classification_result) #TODO save classification image_count += 1 SCROLLABLE_TEXT.write("Image count") SCROLLABLE_TEXT.write(image_count) def main(): COLS[0].write("# Bulk Image Classification App") #with CONTAINER_BODY: with COLS[0]: st.markdown("This app uses several 🤗 models to classify images stored in 🤗 datasets.") st.write("Soon we will have a dataset template") #Model chosen_model_name = COLS[0].selectbox("Select the model to use", MODELS, index=0) if chosen_model_name is not None: COLS[0].write("You selected") COLS[0].write(chosen_model_name) #Dataset shosen_dataset_name = COLS[0].selectbox("Select the dataset to use", DATASETS, index=0) if shosen_dataset_name is not None: COLS[0].write("You selected") COLS[0].write(shosen_dataset_name) #click to classify if chosen_model_name is not None and shosen_dataset_name is not None: if COLS[0].button("Classify images"): classify_full_dataset(shosen_dataset_name, chosen_model_name) COLS[0].write("Classification result {classification_result}") COLS[0].write(classification_result) if __name__ == "__main__": main()