import streamlit as st from transformers import pipeline from PIL import Image from datasets import load_dataset, Image, list_datasets from PIL import Image MODELS = [ "google/vit-base-patch16-224", #Classifição geral "nateraw/vit-age-classifier" #Classifição de idade ] DATASETS = [ "Nunt/testedata", "Nunt/backup_leonardo_2024-02-01" ] MAX_N_LABELS = 5 SPLIT_TO_CLASSIFY = 'pasta' COLS = st.columns([0.75, 0.25]) SCROLLABLE_TEXT = COLS[1].text_area("Conteúdo da segunda coluna", height=500) def classify_one_image(classifier_model, dataset_to_classify): #image_object = dataset[SPLIT_TO_CLASSIFY][i]["image"] #st.image(image_object, caption="Uploaded Image", width=300) #for i in range(len(dataset_to_classify)): #for image in dataset_to_classify: #image_object = dataset[SPLIT_TO_CLASSIFY][i]["image"] #st.image(image_object, caption="Uploaded Image", width=300) #st.write(f"Image classification: ", image['file']) # image_path = image['file'] # img = Image.open(image_path) # st.image(img, caption="Original image", use_column_width=True) # results = classifier(image_path, top_k=MAX_N_LABELS) # st.write(results) # st.write("----") return "done" def classify_full_dataset(shosen_dataset_name, chosen_model_name): image_count = 0 #dataset dataset = load_dataset(shosen_dataset_name,"testedata_readme") #with SCROLLABLE_TEXT: #Image teste load image_object = SCROLLABLE_TEXT.dataset['pasta'][0]["image"] SCROLLABLE_TEXT.image(image_object, caption="Uploaded Image", width=300) #st.write("### FLAG 3") #modle instance classifier_pipeline = pipeline('image-classification', model=chosen_model_name) #COLS[1].write("### FLAG 4") #classification classification_result = SCROLLABLE_TEXT.classifier_pipeline(image_object) SCROLLABLE_TEXT.write(classification_result) #COLS[1].write("### FLAG 5") #classification_array.append(classification_result) #save classification image_count += 1 SCROLLABLE_TEXT.write("Image count") SCROLLABLE_TEXT.write(image_count) return image_count def make_template(): tile = CONTAINER_TOP.title(":balloon:") tile.title(":balloon:") with CONTAINER_FULL: CONTAINER_TOP.title("titulo de teste dentro do container CONTAINER_TOP") with CONTAINER_BODY: #COL1, COL2 = st.columns([3, 1]) with COLS[1]: CONTAINER_LOOP.write("### OUTPUT") def main(): COLS[0].write("# Bulk Image Classification App") #with CONTAINER_BODY: with COLS[0]: st.markdown("This app uses several 🤗 models to classify images stored in 🤗 datasets.") st.write("Soon we will have a dataset template") #Model chosen_model_name = COLS[0].selectbox("Select the model to use", MODELS, index=0) if chosen_model_name is not None: COLS[0].write("You selected") COLS[0].write(chosen_model_name) #Dataset shosen_dataset_name = COLS[0].selectbox("Select the dataset to use", DATASETS, index=0) if shosen_dataset_name is not None: COLS[0].write("You selected") COLS[0].write(shosen_dataset_name) #click to classify #image_object = dataset['pasta'][0] if chosen_model_name is not None and shosen_dataset_name is not None: if COLS[0].button("Classify images"): #classification_array =[] classification_result = classify_full_dataset(shosen_dataset_name, chosen_model_name) COLS[0].write("Classification result {classification_result}") COLS[0].write(classification_result) #classification_array.append(classification_result) #st.write("# FLAG 6") #st.write(classification_array) if __name__ == "__main__": main()