Nuno-Tome commited on
Commit
f0419bf
·
2 Parent(s): 9d1b6ab 2310078

Merge branch 'feature/divide_in_2_columns' into dev

Browse files
Files changed (3) hide show
  1. .gitignore +2 -0
  2. app.py +49 -25
  3. template.drawio +1 -0
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ .$template.drawio.bkp
2
+ .$template.drawio.dtmp
app.py CHANGED
@@ -15,9 +15,12 @@ DATASETS = [
15
  MAX_N_LABELS = 5
16
  SPLIT_TO_CLASSIFY = 'pasta'
17
 
18
- #(image_object, classifier_pipeline)
19
- #def classify_one_image(classifier_model, dataset_to_classify):
20
- #classify_one_image(image_object, classifier_pipeline)
 
 
 
21
  def classify_one_image(classifier_model, dataset_to_classify):
22
 
23
 
@@ -49,58 +52,79 @@ def classify_full_dataset(shosen_dataset_name, chosen_model_name):
49
 
50
  #dataset
51
  dataset = load_dataset(shosen_dataset_name,"testedata_readme")
 
52
  #Image teste load
53
  image_object = dataset['pasta'][0]["image"]
54
- st.image(image_object, caption="Uploaded Image", width=300)
55
- st.write("### FLAG 3")
56
 
 
 
 
57
  #modle instance
58
  classifier_pipeline = pipeline('image-classification', model=chosen_model_name)
59
- st.write("### FLAG 4")
60
 
61
  #classification
62
  classification_result = classifier_pipeline(image_object)
63
- st.write(classification_result)
64
- st.write("### FLAG 5")
65
  #classification_array.append(classification_result)
66
 
67
  #save classification
68
 
69
  image_count += 1
70
-
 
71
  return image_count
72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
  def main():
74
- st.title("Bulk Image Classification DEMO")
75
- st.markdown("This app uses several 🤗 models to classify images stored in 🤗 datasets.")
76
- st.write("Soon we will have a dataset template")
77
 
78
- ## Restart or reset your app
79
- #if st.button("Restart"):
80
- ## Code to restart or reset your app goes here
81
- # st.experimental_rerun()
 
 
 
 
82
 
83
  #Model
84
- chosen_model_name = st.selectbox("Select the model to use", MODELS, index=0)
85
  if chosen_model_name is not None:
86
- st.write("You selected", chosen_model_name)
 
87
 
88
  #Dataset
89
- shosen_dataset_name = st.selectbox("Select the dataset to use", DATASETS, index=0)
90
  if shosen_dataset_name is not None:
91
- st.write("You selected", shosen_dataset_name)
 
92
 
93
  #click to classify
94
  #image_object = dataset['pasta'][0]
95
  if chosen_model_name is not None and shosen_dataset_name is not None:
96
- if st.button("Classify images"):
97
-
98
  #classification_array =[]
99
  classification_result = classify_full_dataset(shosen_dataset_name, chosen_model_name)
100
- st.write(f"Classification result: {classification_result}")
 
101
  #classification_array.append(classification_result)
102
  #st.write("# FLAG 6")
103
- #st.write(classification_array)
104
-
105
  if __name__ == "__main__":
106
  main()
 
15
  MAX_N_LABELS = 5
16
  SPLIT_TO_CLASSIFY = 'pasta'
17
 
18
+ COLS = st.columns([0.75, 0.25])
19
+ #SCROLLABLE_TEXT = COLS[1].text_area("Conteúdo da segunda coluna", height=500)
20
+ SCROLLABLE_TEXT = COLS[1].container(height=500)
21
+
22
+
23
+
24
  def classify_one_image(classifier_model, dataset_to_classify):
25
 
26
 
 
52
 
53
  #dataset
54
  dataset = load_dataset(shosen_dataset_name,"testedata_readme")
55
+ #with SCROLLABLE_TEXT:
56
  #Image teste load
57
  image_object = dataset['pasta'][0]["image"]
 
 
58
 
59
+ SCROLLABLE_TEXT.image(image_object, caption="Uploaded Image", width=300)
60
+ #st.write("### FLAG 3")
61
+
62
  #modle instance
63
  classifier_pipeline = pipeline('image-classification', model=chosen_model_name)
64
+ #COLS[1].write("### FLAG 4")
65
 
66
  #classification
67
  classification_result = classifier_pipeline(image_object)
68
+ SCROLLABLE_TEXT.write(classification_result)
69
+ #COLS[1].write("### FLAG 5")
70
  #classification_array.append(classification_result)
71
 
72
  #save classification
73
 
74
  image_count += 1
75
+ SCROLLABLE_TEXT.write("Image count")
76
+ SCROLLABLE_TEXT.write(image_count)
77
  return image_count
78
 
79
+
80
+ def make_template():
81
+
82
+ tile = CONTAINER_TOP.title(":balloon:")
83
+ tile.title(":balloon:")
84
+
85
+ with CONTAINER_FULL:
86
+ CONTAINER_TOP.title("titulo de teste dentro do container CONTAINER_TOP")
87
+ with CONTAINER_BODY:
88
+ #COL1, COL2 = st.columns([3, 1])
89
+ with COLS[1]:
90
+ CONTAINER_LOOP.write("### OUTPUT")
91
+
92
+
93
  def main():
 
 
 
94
 
95
+
96
+ COLS[0].write("# Bulk Image Classification App")
97
+
98
+
99
+ #with CONTAINER_BODY:
100
+ with COLS[0]:
101
+ st.markdown("This app uses several 🤗 models to classify images stored in 🤗 datasets.")
102
+ st.write("Soon we will have a dataset template")
103
 
104
  #Model
105
+ chosen_model_name = COLS[0].selectbox("Select the model to use", MODELS, index=0)
106
  if chosen_model_name is not None:
107
+ COLS[0].write("You selected")
108
+ COLS[0].write(chosen_model_name)
109
 
110
  #Dataset
111
+ shosen_dataset_name = COLS[0].selectbox("Select the dataset to use", DATASETS, index=0)
112
  if shosen_dataset_name is not None:
113
+ COLS[0].write("You selected")
114
+ COLS[0].write(shosen_dataset_name)
115
 
116
  #click to classify
117
  #image_object = dataset['pasta'][0]
118
  if chosen_model_name is not None and shosen_dataset_name is not None:
119
+ if COLS[0].button("Classify images"):
120
+
121
  #classification_array =[]
122
  classification_result = classify_full_dataset(shosen_dataset_name, chosen_model_name)
123
+ COLS[0].write("Classification result {classification_result}")
124
+ COLS[0].write(classification_result)
125
  #classification_array.append(classification_result)
126
  #st.write("# FLAG 6")
127
+ #st.write(classification_array)
128
+
129
  if __name__ == "__main__":
130
  main()
template.drawio ADDED
@@ -0,0 +1 @@
 
 
1
+ <mxfile host="Electron" modified="2024-02-05T13:53:02.225Z" agent="5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) draw.io/19.0.3 Chrome/102.0.5005.63 Electron/19.0.3 Safari/537.36" etag="oV2ZsfPlORpHoVp-DbXF" version="19.0.3" type="device"><diagram id="0vYW19gc_7FpzVwPDTXh" name="Página-1">3ZbPb4IwFMf/Go5LoIUC1zndDttBXbLjgvQBnYWaWof616+MIlY0mcm8eKL9vh+8ft5LwcGjcvssk1XxJihwB7l06+AnByHPxZF+NMquVYgft0IuGW0ltxfmbA9dpFE3jMLaaK2khOCKrWwxFVUFqbK0REpR226Z4NQSVkkOVhmNME8TDgO3D0ZVYVSPxL3hBVhedK8mgd9ayqTzNpnXRUJFfSThsYNHUgjVrsrtCHhDzwYzuWA9VCahUn8J2L9677Ov2WLKJstpXH3mczR7MFm+E74xJzbFql2HQIpNRaFJ4jr4sS6YgvkqSRtrrZuutUKVXO88vcwY5yPBhfyNxVmWoTTV+lpJsYQjCyULEhBtMQWAVLC9eDLvwEtPGogSlNxpFxOAQtKGmCHzItzu675lPjZpi6Nu4TA0o2LGJD/k7kHqhWF5BVd0F1xj/4RrPOTqoiFXcius+MZYoxTOY11EgR+4/4UVW1gRIQOsKIyGWFHk34irfw9cg5Nr4BxXr7uNba7oRlzDe7gGgiiwuYbBkKtLznDtGnAFV73tP4m/tqM/Czz+AQ==</diagram></mxfile>