samyak152002's picture
Update app.py
184c6f9 verified
import re
import fitz # PyMuPDF
from pdfminer.high_level import extract_text
from pdfminer.layout import LAParams
import language_tool_python
from typing import List, Dict, Any, Tuple
from collections import Counter
import json
import traceback
import io
import tempfile
import os
import gradio as gr
# Set JAVA_HOME environment variable
os.environ['JAVA_HOME'] = '/usr/lib/jvm/java-11-openjdk-amd64'
# ------------------------------
# Analysis Functions
# ------------------------------
# def extract_pdf_text_by_page(file) -> List[str]:
# """Extracts text from a PDF file, page by page, using PyMuPDF."""
# if isinstance(file, str):
# with fitz.open(file) as doc:
# return [page.get_text("text") for page in doc]
# else:
# with fitz.open(stream=file.read(), filetype="pdf") as doc:
# return [page.get_text("text") for page in doc]
def extract_pdf_text(file) -> str:
"""Extracts full text from a PDF file using PyMuPDF4LLM."""
try:
print(f"Opening PDF file: {file}")
# Handle file path vs stream
temp_file_path = None
if isinstance(file, str):
print(f"Opening file by path: {file}")
file_path = file
else:
print(f"Opening file from stream")
import tempfile
import os
temp_file = tempfile.NamedTemporaryFile(suffix=".pdf", delete=False)
temp_file_path = temp_file.name
temp_file.write(file.read())
temp_file.close()
file_path = temp_file_path
# Get page count with PyMuPDF for logging purposes
doc = fitz.open(file_path)
page_count = len(doc)
doc.close()
print(f"PDF opened successfully with {page_count} pages")
# Process with pymupdf4llm
import pymupdf4llm
full_text = pymupdf4llm.to_markdown(file_path)
# Log extraction info for each page (approximating per-page counts)
avg_chars_per_page = len(full_text) // page_count if page_count > 0 else 0
for page_number in range(page_count):
print(f"Extracted {avg_chars_per_page} characters from page {page_number+1}")
# Clean up temporary file if created
if temp_file_path:
os.remove(temp_file_path)
print(f"Total extracted text length: {len(full_text)} characters.")
print(full_text)
return full_text
except Exception as e:
print(f"Error extracting text from PDF: {str(e)}")
import traceback
print(traceback.format_exc())
return ""
def check_text_presence(full_text: str, search_terms: List[str]) -> Dict[str, bool]:
"""Checks for the presence of required terms in the text."""
return {term: term.lower() in full_text.lower() for term in search_terms}
def label_authors(full_text: str) -> str:
"""Label authors in the text with 'Authors:' if not already labeled."""
author_line_regex = r"^(?:.*\n)(.*?)(?:\n\n)"
match = re.search(author_line_regex, full_text, re.MULTILINE)
if match:
authors = match.group(1).strip()
return full_text.replace(authors, f"Authors: {authors}")
return full_text
def check_metadata(full_text: str) -> Dict[str, Any]:
"""Check for metadata elements."""
return {
"author_email": bool(re.search(r'\b[\w.-]+?@\w+?\.\w+?\b', full_text)),
"list_of_authors": bool(re.search(r'Authors?:', full_text, re.IGNORECASE)),
"keywords_list": bool(re.search(r'Keywords?:', full_text, re.IGNORECASE)),
"word_count": len(full_text.split()) or "Missing"
}
def check_disclosures(full_text: str) -> Dict[str, bool]:
"""Check for disclosure statements."""
# Regular search terms
search_terms = [
"conflict of interest statement",
"ethics statement",
"funding statement",
"data access statement"
]
# Get results for regular terms
results = check_text_presence(full_text, search_terms)
# Special check for author contribution(s) statement - either singular or plural form
has_author_contribution = ("author contribution statement" in full_text.lower() or
"author contributions statement" in full_text.lower())
# Add the author contribution result to our results dictionary
results["author contribution statement"] = has_author_contribution
return results
def check_figures_and_tables(full_text: str) -> Dict[str, bool]:
"""Check for figures and tables."""
return {
"figures_with_citations": bool(re.search(r'Figure \d+.*?citation', full_text, re.IGNORECASE)),
"figures_legends": bool(re.search(r'Figure \d+.*?legend', full_text, re.IGNORECASE)),
"tables_legends": bool(re.search(r'Table \d+.*?legend', full_text, re.IGNORECASE))
}
def check_references(full_text: str) -> Dict[str, Any]:
"""Check for references."""
return {
"old_references": bool(re.search(r'\b19[0-9]{2}\b', full_text)),
"citations_in_abstract": bool(re.search(r'\b(citation|reference)\b', full_text[:1000], re.IGNORECASE)),
"reference_count": len(re.findall(r'\[.*?\]', full_text)),
"self_citations": bool(re.search(r'Self-citation', full_text, re.IGNORECASE))
}
def check_structure(full_text: str) -> Dict[str, bool]:
"""Check document structure."""
return {
"imrad_structure": all(section in full_text for section in ["Introduction", "Methods", "Results", "Discussion"]),
"abstract_structure": "structured abstract" in full_text.lower()
}
def check_language_issues(full_text: str) -> Dict[str, Any]:
"""Check for language issues using LanguageTool and additional regex patterns."""
try:
language_tool = language_tool_python.LanguageTool('en-US')
matches = language_tool.check(full_text)
issues = []
# Process LanguageTool matches
for match in matches:
# Ignore issues with rule_id 'EN_SPLIT_WORDS_HYPHEN'
if match.ruleId == "EN_SPLIT_WORDS_HYPHEN":
continue
issues.append({
"message": match.message,
"context": match.context.strip(),
"suggestions": match.replacements[:3] if match.replacements else [],
"category": match.category,
"rule_id": match.ruleId,
"offset": match.offset,
"length": match.errorLength,
"coordinates": [],
"page": 0
})
print(f"Total language issues found: {len(issues)}")
# -----------------------------------
# Additions: Regex-based Issue Detection
# -----------------------------------
# Define regex pattern to find words immediately followed by '[' without space
regex_pattern = r'\b(\w+)\[(\d+)\]'
regex_matches = list(re.finditer(regex_pattern, full_text))
print(f"Total regex issues found: {len(regex_matches)}")
# Process regex matches
for match in regex_matches:
word = match.group(1)
number = match.group(2)
start = match.start()
end = match.end()
issues.append({
"message": f"Missing space before '[' in '{word}[{number}]'. Should be '{word} [{number}]'.",
"context": full_text[max(match.start() - 30, 0):min(match.end() + 30, len(full_text))].strip(),
"suggestions": [f"{word} [{number}]", f"{word} [`{number}`]", f"{word} [number {number}]"],
"category": "Formatting",
"rule_id": "SPACE_BEFORE_BRACKET",
"offset": match.start(),
"length": match.end() - match.start(),
"coordinates": [],
"page": 0
})
print(f"Total combined issues found: {len(issues)}")
return {
"total_issues": len(issues),
"issues": issues
}
except Exception as e:
print(f"Error checking language issues: {e}")
return {"error": str(e)}
def check_language(full_text: str) -> Dict[str, Any]:
"""Check language quality."""
return {
"plain_language": bool(re.search(r'plain language summary', full_text, re.IGNORECASE)),
"readability_issues": False, # Placeholder for future implementation
"language_issues": check_language_issues(full_text)
}
def check_figure_order(full_text: str) -> Dict[str, Any]:
"""Check if figures are referred to in sequential order."""
figure_pattern = r'(?:Fig(?:ure)?\.?|Figure)\s*(\d+)'
figure_references = re.findall(figure_pattern, full_text, re.IGNORECASE)
figure_numbers = sorted(set(int(num) for num in figure_references))
is_sequential = all(a + 1 == b for a, b in zip(figure_numbers, figure_numbers[1:]))
if figure_numbers:
expected_figures = set(range(1, max(figure_numbers) + 1))
missing_figures = list(expected_figures - set(figure_numbers))
else:
missing_figures = None
duplicates = [num for num, count in Counter(figure_references).items() if count > 1]
duplicate_numbers = [int(num) for num in duplicates]
not_mentioned = list(set(figure_references) - set(duplicates))
return {
"sequential_order": is_sequential,
"figure_count": len(figure_numbers),
"missing_figures": missing_figures,
"figure_order": figure_numbers,
"duplicate_references": duplicates,
"not_mentioned": not_mentioned
}
def check_reference_order(full_text: str) -> Dict[str, Any]:
"""Check if references in the main body text are in order."""
reference_pattern = r'\[(\d+)\]'
references = re.findall(reference_pattern, full_text)
ref_numbers = [int(ref) for ref in references]
max_ref = 0
out_of_order = []
for i, ref in enumerate(ref_numbers):
if ref > max_ref + 1:
out_of_order.append((i+1, ref))
max_ref = max(max_ref, ref)
all_refs = set(range(1, max_ref + 1))
used_refs = set(ref_numbers)
missing_refs = list(all_refs - used_refs)
return {
"max_reference": max_ref,
"out_of_order": out_of_order,
"missing_references": missing_refs,
"is_ordered": len(out_of_order) == 0 and len(missing_refs) == 0
}
def highlight_issues_in_pdf(file, language_matches: List[Dict[str, Any]]) -> bytes:
"""
Highlights language issues in the PDF and returns the annotated PDF as bytes.
This function maps LanguageTool matches to specific words in the PDF
and highlights those words.
"""
try:
# Open the PDF
doc = fitz.open(stream=file.read(), filetype="pdf") if not isinstance(file, str) else fitz.open(file)
# print(f"Opened PDF with {len(doc)} pages.")
# print(language_matches)
# Extract words with positions from each page
word_list = [] # List of tuples: (page_number, word, x0, y0, x1, y1)
for page_number in range(len(doc)):
page = doc[page_number]
print(page.get_text("words"))
words = page.get_text("words") # List of tuples: (x0, y0, x1, y1, "word", block_no, line_no, word_no)
for w in words:
# print(w)
word_text = w[4]
# **Fix:** Insert a space before '[' to ensure "globally [2]" instead of "globally[2]"
# if '[' in word_text:
# word_text = word_text.replace('[', ' [')
word_list.append((page_number, word_text, w[0], w[1], w[2], w[3]))
# print(f"Total words extracted: {len(word_list)}")
# Concatenate all words to form the full text
concatenated_text=""
concatenated_text = " ".join([w[1] for w in word_list])
# print(f"Concatenated text length: {concatenated_text} characters.")
# Find "Abstract" section and set the processing start point
abstract_start = concatenated_text.lower().find("abstract")
abstract_offset = 0 if abstract_start == -1 else abstract_start
# Find "References" section and exclude from processing
references_start = concatenated_text.lower().rfind("references")
references_offset = len(concatenated_text) if references_start == -1 else references_start
# Iterate over each language issue
for idx, issue in enumerate(language_matches, start=1):
offset = issue["offset"] # offset+line_no-1
length = issue["length"]
# Skip issues in the references section
if offset < abstract_offset or offset >= references_offset:
continue
error_text = concatenated_text[offset:offset+length]
print(f"\nIssue {idx}: '{error_text}' at offset {offset} with length {length}")
# Find the words that fall within the error span
current_pos = 0
target_words = []
for word in word_list:
word_text = word[1]
word_length = len(word_text) + 1 # +1 for the space
if current_pos + word_length > offset and current_pos < offset + length:
target_words.append(word)
current_pos += word_length
if not target_words:
# print("No matching words found for this issue.")
continue
initial_x = target_words[0][2]
initial_y = target_words[0][3]
final_x = target_words[len(target_words)-1][4]
final_y = target_words[len(target_words)-1][5]
issue["coordinates"] = [initial_x, initial_y, final_x, final_y]
issue["page"] = target_words[0][0] + 1
# Add highlight annotations to the target words
print()
print("issue", issue)
print("error text", error_text)
print(target_words)
print()
for target in target_words:
page_num, word_text, x0, y0, x1, y1 = target
page = doc[page_num]
# Define a rectangle around the word with some padding
rect = fitz.Rect(x0 - 1, y0 - 1, x1 + 1, y1 + 1)
# Add a highlight annotation
highlight = page.add_highlight_annot(rect)
highlight.set_colors(stroke=(1, 1, 0)) # Yellow color
highlight.update()
# print(f"Highlighted '{word_text}' on page {page_num + 1} at position ({x0}, {y0}, {x1}, {y1})")
# Save annotated PDF to bytes
byte_stream = io.BytesIO()
doc.save(byte_stream)
annotated_pdf_bytes = byte_stream.getvalue()
doc.close()
# Save annotated PDF locally for verification
with open("annotated_temp.pdf", "wb") as f:
f.write(annotated_pdf_bytes)
# print("Annotated PDF saved as 'annotated_temp.pdf' for manual verification.")
return language_matches, annotated_pdf_bytes
except Exception as e:
print(f"Error in highlighting PDF: {e}")
return b""
# ------------------------------
# Main Analysis Function
# ------------------------------
# server/gradio_client.py
def analyze_pdf(filepath: str) -> Tuple[Dict[str, Any], bytes]:
"""Analyzes the PDF for language issues and returns results and annotated PDF."""
try:
full_text = extract_pdf_text(filepath)
if not full_text:
return {"error": "Failed to extract text from PDF."}, None
# Create the results structure
results = {
"issues": [], # Initialize as empty array
"regex_checks": {
"metadata": check_metadata(full_text),
"disclosures": check_disclosures(full_text),
"figures_and_tables": check_figures_and_tables(full_text),
"references": check_references(full_text),
"structure": check_structure(full_text),
"figure_order": check_figure_order(full_text),
"reference_order": check_reference_order(full_text)
}
}
# Handle language issues
language_issues = check_language_issues(full_text)
if "error" in language_issues:
return {"error": language_issues["error"]}, None
issues = language_issues.get("issues", [])
if issues:
language_matches, annotated_pdf = highlight_issues_in_pdf(filepath, issues)
results["issues"] = language_matches # This is already an array from check_language_issues
return results, annotated_pdf
else:
# Keep issues as empty array if none found
return results, None
except Exception as e:
return {"error": str(e)}, None
# ------------------------------
# Gradio Interface
# ------------------------------
def process_upload(file):
"""
Process the uploaded PDF file and return analysis results and annotated PDF.
"""
# print(file.name)
if file is None:
return json.dumps({"error": "No file uploaded"}, indent=2), None
# # Create a temporary file to work with
# with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as temp_input:
# temp_input.write(file)
# temp_input_path = temp_input.name
# print(temp_input_path)
temp_input = tempfile.NamedTemporaryFile(delete=False, suffix='.pdf')
temp_input.write(file)
temp_input_path = temp_input.name
print(temp_input_path)
# Analyze the PDF
results, annotated_pdf = analyze_pdf(temp_input_path)
print(results)
results_json = json.dumps(results, indent=2)
# Clean up the temporary input file
os.unlink(temp_input_path)
# If we have an annotated PDF, save it temporarily
if annotated_pdf:
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_file:
tmp_file.write(annotated_pdf)
return results_json, tmp_file.name
return results_json, None
# except Exception as e:
# error_message = json.dumps({
# "error": str(e),
# "traceback": traceback.format_exc()
# }, indent=2)
# return error_message, None
def create_interface():
with gr.Blocks(title="PDF Analyzer") as interface:
gr.Markdown("# PDF Analyzer")
gr.Markdown("Upload a PDF document to analyze its structure, references, language, and more.")
with gr.Row():
file_input = gr.File(
label="Upload PDF",
file_types=[".pdf"],
type="binary"
)
with gr.Row():
analyze_btn = gr.Button("Analyze PDF")
with gr.Row():
results_output = gr.JSON(
label="Analysis Results",
show_label=True
)
with gr.Row():
pdf_output = gr.File(
label="Annotated PDF",
show_label=True
)
analyze_btn.click(
fn=process_upload,
inputs=[file_input],
outputs=[results_output, pdf_output]
)
return interface
if __name__ == "__main__":
interface = create_interface()
interface.launch(
share=False, # Set to False in production
# server_name="0.0.0.0",
server_port=None
)