Update app.py
Browse files
app.py
CHANGED
|
@@ -1,19 +1,21 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
import pytesseract
|
| 4 |
|
| 5 |
-
#
|
|
|
|
|
|
|
|
|
|
| 6 |
tokenizer = AutoTokenizer.from_pretrained("sambanovasystems/SambaLingo-Arabic-Chat")
|
| 7 |
model = AutoModelForCausalLM.from_pretrained("sambanovasystems/SambaLingo-Arabic-Chat")
|
| 8 |
|
| 9 |
-
# Use a pipeline as a high-level helper
|
| 10 |
-
chat_model = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 11 |
-
|
| 12 |
# Chat function
|
| 13 |
def chat_fn(history, user_input):
|
| 14 |
conversation = {"history": history, "user": user_input}
|
| 15 |
-
response
|
| 16 |
-
|
|
|
|
|
|
|
| 17 |
history.append((user_input, conversation["bot"]))
|
| 18 |
return history, ""
|
| 19 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
| 3 |
import pytesseract
|
| 4 |
|
| 5 |
+
# Use a pipeline as a high-level helper
|
| 6 |
+
from transformers import pipeline
|
| 7 |
+
|
| 8 |
+
# Initialize tokenizer and model
|
| 9 |
tokenizer = AutoTokenizer.from_pretrained("sambanovasystems/SambaLingo-Arabic-Chat")
|
| 10 |
model = AutoModelForCausalLM.from_pretrained("sambanovasystems/SambaLingo-Arabic-Chat")
|
| 11 |
|
|
|
|
|
|
|
|
|
|
| 12 |
# Chat function
|
| 13 |
def chat_fn(history, user_input):
|
| 14 |
conversation = {"history": history, "user": user_input}
|
| 15 |
+
# Generate a response using the model
|
| 16 |
+
input_ids = tokenizer.encode(user_input, return_tensors="pt")
|
| 17 |
+
response = model.generate(input_ids=input_ids, max_length=50)
|
| 18 |
+
conversation["bot"] = tokenizer.decode(response[0], skip_special_tokens=True)
|
| 19 |
history.append((user_input, conversation["bot"]))
|
| 20 |
return history, ""
|
| 21 |
|