import gradio as gr from transformers import pipeline # Load the clean v2 model classifier = pipeline( "text-classification", model="samurai9776/thought-classifier-menu-aware" ) def classify_thought(ai_utterance, cx_utterance): if not ai_utterance or not cx_utterance: return "Please enter both utterances", 0, 0 text = f"{ai_utterance} [SEP] {cx_utterance}" results = classifier(text) scores = {r['label']: r['score'] for r in results} complete_score = scores.get('COMPLETE', 0) incomplete_score = scores.get('INCOMPLETE', 0) prediction = "Complete ✓" if complete_score > incomplete_score else "Incomplete ⚠️" return prediction, complete_score, incomplete_score with gr.Blocks(title="Thought Classifier v2") as demo: gr.Markdown("# 🤖 Thought Completion Classifier v2") with gr.Row(): with gr.Column(): ai_input = gr.Textbox(label="AI Utterance", placeholder="What sandwich?") cx_input = gr.Textbox(label="Customer Utterance", placeholder="Chicken") classify_btn = gr.Button("Classify", variant="primary") with gr.Column(): prediction = gr.Textbox(label="Prediction") complete_score = gr.Number(label="Complete Score") incomplete_score = gr.Number(label="Incomplete Score") classify_btn.click( classify_thought, inputs=[ai_input, cx_input], outputs=[prediction, complete_score, incomplete_score] ) demo.launch()