Spaces:
Sleeping
Sleeping
File size: 11,304 Bytes
5e00ed4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
import os
import streamlit as st
from vector_tool import ensemble_retriever
from langgraph.prebuilt import ToolInvocation
from langchain_core.messages import ToolMessage
import json
# Set up the tools to execute them from the graph
from langgraph.prebuilt import ToolExecutor
# tools retrieval
from function_tools import tool_chain
from vector_tool import ensemble_retriever
os.environ['OPENAI_API_KEY'] = st.secrets["OPENAI_API_KEY"]
os.environ['TAVILY_API_KEY'] = st.secrets["TAVILY_API_KEY"]
### Retrieval Grader
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field
#LLM models
llm_AI4 = ChatOpenAI(model="gpt-4-1106-preview", temperature=0)
# Data model
class GradeDocuments(BaseModel):
"""Binary score for relevance check on retrieved documents."""
binary_score: str = Field(description="Documents are relevant to the question, 'yes' or 'no'")
# LLM with function call
structured_llm_grader = llm_AI4.with_structured_output(GradeDocuments)
# Prompt
system = """You are a grader assessing relevance of a retrieved document to a user question. \n
If the document contains keyword(s) or semantic meaning related to the question, grade it as relevant. \n
Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question."""
grade_prompt = ChatPromptTemplate.from_messages(
[
("system", system),
("human", "Retrieved document: \n\n {document} \n\n User question: {question}"),
]
)
retrieval_grader = grade_prompt | structured_llm_grader
### Generate
from langchain import hub
from langchain.prompts import MessagesPlaceholder
from langchain.agents.output_parsers.openai_tools import OpenAIToolsAgentOutputParser
from langchain.prompts import MessagesPlaceholder
from langchain.agents.format_scratchpad.openai_tools import (
format_to_openai_tool_messages
)
from langchain_core.messages import AIMessage, FunctionMessage, HumanMessage
from langchain_core.output_parsers import StrOutputParser
from typing import Any, List, Union
# Prompt
#prompt = hub.pull("rlm/rag-prompt")
system_message = '''You are an AI assistant for answering questions about vedas and scriptures.
\nYou are given the following extracted documents from Svarupa Knowledge Base (https://svarupa.org/) and other documents and a question.
Provide a conversational answer.\nIf you are not provided with any documents, say \"I did not get any relevant context for this but
I will reply to the best of my knowledge\" and then write your answer\nIf you don't know the answer, just say \"Hmm, I'm not sure. \" Don't try to make up an answer.
\nIf the question is not about vedas and scriptures, politely inform them that you are tuned to only answer questions about that.\n\n'''
generate_prompt = ChatPromptTemplate.from_messages(
[
("system", system_message),
("human", "Here is the given context {context}, queation: {question} \n\n Formulate an answer."),
]
)
# LLM
llm_AI = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)
# Post-processing
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
# Chain
rag_chain = generate_prompt | llm_AI4 | StrOutputParser() #OpenAIToolsAgentOutputParser()
####-----------------TESTING
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a helpful assistant. Answer all questions to the best of your ability.",
),
MessagesPlaceholder(variable_name="chat_history"),
("human", "{question}"),
]
)
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain.memory import ChatMessageHistory
chat_history_for_chain = ChatMessageHistory()
chain_with_message_history = RunnableWithMessageHistory(
rag_chain,
lambda session_id: chat_history_for_chain,
input_messages_key="question",
history_messages_key="chat_history",
)
### Question Re-writer
# LLM
llm = ChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0)
# Prompt
system = """You a question re-writer that converts an input question to a better version that is optimized \n
for a search. Look at the input and try to reason about the underlying sematic intent / meaning."""
re_write_prompt = ChatPromptTemplate.from_messages(
[
("system", system),
("human", "Here is the initial question: \n\n {question} \n Formulate an improved question."),
]
)
question_rewriter = re_write_prompt | llm | StrOutputParser()
### Search
from langchain_community.tools.tavily_search import TavilySearchResults
web_search_tool = TavilySearchResults(k=2)
from typing_extensions import TypedDict
from typing import List
from typing import TypedDict, Annotated, Sequence
import operator
from langchain_core.messages import BaseMessage
class GraphState(TypedDict):
"""
Represents the state of our graph.
Attributes:
question: question
generation: LLM generation
web_search: whether to add search
documents: list of documents
"""
question : str
generation : str
web_search : str
messages: List[str] #Union[dict[str, Any]]
from langchain.schema import Document
def retrieve(state):
"""
Retrieve documents
Args:
state (dict): The current graph state
Returns:
state (dict): New key added to state, documents, that contains retrieved documents
"""
print("---VECTOR RETRIEVE---")
question = state["question"]
# Retrieval
documents = ensemble_retriever.get_relevant_documents(question)
#print(documents)
# Iterate over each document and update the 'metadata' field with the file name
for doc in documents:
try:
file_path = doc.metadata['source']
#print(file_path)
file_name = os.path.split(file_path)[1] # Get the file name from the file path
doc.metadata['source'] = file_name
except KeyError:
# Handle the case where 'source' field is missing in the metadata
doc.metadata['source'] = 'unavailable'
except Exception as e:
# Handle any other exceptions that may occur
print(f"An error occurred while processing document: {e}")
return {"messages": documents, "question": question}
def generate(state):
"""
Generate answer
Args:
state (dict): The current graph state
Returns:
state (dict): New key added to state, generation, that contains LLM generation
"""
print("---GENERATE---")
question = state["question"]
messages = state["messages"]
print(messages)
# RAG generation
generation = chain_with_message_history.invoke({"context": messages, "question": question},{"configurable": {"session_id": "unused"}})
return {"messages": messages, "question": question, "generation": generation}
def grade_documents(state):
"""
Determines whether the retrieved documents are relevant to the question.
Args:
state (dict): The current graph state
Returns:
state (dict): Updates documents key with only filtered relevant documents
"""
print("---CHECK DOCUMENT RELEVANCE TO QUESTION---")
question = state["question"]
messages = state["messages"]
# Score each doc
filtered_docs = []
web_search = "No"
for d in messages:
score = retrieval_grader.invoke({"question": question, "document": d.page_content})
grade = score.binary_score
if grade == "yes":
print("---GRADE: DOCUMENT RELEVANT---")
filtered_docs.append(d)
else:
print("---GRADE: DOCUMENT NOT RELEVANT---")
continue
print("---TOOLS RETRIEVE---")
tool_documents = tool_chain.invoke(question)
#print(tool_documents)
if tool_documents:
for item in tool_documents:
filtered_docs.append(Document(page_content=str(item['output']),metadata={"source": 'https://svarupa.org/home',"name":item['name']}))
# If filtered_docs is empty, perform a web search
if not filtered_docs:
print("--PERFORMING WEB SEARCH--")
web_search = "Yes"
return {"messages": filtered_docs, "question": question, "web_search": web_search}
def transform_query(state):
"""
Transform the query to produce a better question.
Args:
state (dict): The current graph state
Returns:
state (dict): Updates question key with a re-phrased question
"""
print("---TRANSFORM QUERY---")
question = state["question"]
messages = state["messages"]
# Re-write question
better_question = question_rewriter.invoke({"question": question})
return {"messages": messages, "question": better_question}
def web_search(state):
"""
Web search based on the re-phrased question.
Args:
state (dict): The current graph state
Returns:
state (dict): Updates documents key with appended web results
"""
print("---WEB SEARCH---")
question = state["question"]
messages = state["messages"]
# Web search
docs = web_search_tool.invoke({"query": question})
print(docs)
#web_results = "\n".join([d["content"] for d in docs])
web_results = [Document(page_content=d["content"], metadata={"source": d["url"]}) for d in docs]
print(f"Web Results: {web_results}")
messages.extend(web_results)
return {"messages": messages, "question": question}
### Edges
def decide_to_generate(state):
"""
Determines whether to generate an answer, or re-generate a question.
Args:
state (dict): The current graph state
Returns:
str: Binary decision for next node to call
"""
print("---ASSESS GRADED DOCUMENTS---")
question = state["question"]
web_search = state["web_search"]
filtered_documents = state["messages"]
if web_search == "Yes":
# All documents have been filtered check_relevance
# We will re-generate a new query
print("---DECISION: ALL DOCUMENTS ARE NOT RELEVANT TO QUESTION, TRANSFORM QUERY---")
return "transform_query"
else:
# We have relevant documents, so generate answer
print("---DECISION: GENERATE---")
return "generate"
from langgraph.graph import END, StateGraph
workflow = StateGraph(GraphState)
# Define the nodes
workflow.add_node("retrieve", retrieve) # retrieve
workflow.add_node("grade_documents", grade_documents) # grade documents
workflow.add_node("generate", generate) # generatae
workflow.add_node("transform_query", transform_query) # transform_query
workflow.add_node("web_search_node", web_search) # web search
# Build graph
workflow.set_entry_point("retrieve")
workflow.add_edge("retrieve", "grade_documents")
workflow.add_conditional_edges(
"grade_documents",
decide_to_generate,
{
"transform_query": "transform_query",
"generate": "generate",
},
)
workflow.add_edge("transform_query", "web_search_node")
workflow.add_edge("web_search_node", "generate")
workflow.add_edge("generate", END)
# Compile
crag_app = workflow.compile() |