Spaces:
Sleeping
Sleeping
File size: 29,038 Bytes
9a19c9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 |
from typing import Optional
import json
import logging
from utils import iast_process, get_list_meaning_word, get_details_mantra_json, word_sentence_similarity, extract_meaning_by_language
import ast
from langchain_core.tools import tool
from database import execute_sql_query, get_details_mantra_json
from langchain.pydantic_v1 import BaseModel, Field
from langchain.tools import StructuredTool
from typing import Optional
import streamlit as st
from langchain_core.utils.function_calling import convert_to_openai_function
from langchain_core.messages import AIMessage
from langchain_core.runnables import Runnable
import os
os.environ['OPENAI_API_KEY'] = st.secrets["OPENAI_API_KEY"]
from langchain_openai import ChatOpenAI
#LLM
llm = ChatOpenAI(model="gpt-3.5-turbo-0125")
llm_AI4 = ChatOpenAI(model="gpt-4-1106-preview", temperature=0)
#Classes
class MantraInput(BaseModel):
mantraid: Optional[str] = Field(None, description="The mantra id. For example, 1.1.1.1, 2.1.1,3.1.1.2,4.2.3.1, and 5.0.1.1.2")
scripture_name: Optional[str] = Field(None, description="Name of the scripture like RigVeda, SamaVeda, AtharvaVeda, KrishnaYajurVeda, and ShuklaYajurVeda")
KandahNumber: Optional[int] = Field(None, description="Kandah Number of Vedamantra")
MandalaNumber: Optional[int] = Field(None, description="Mandala Number of Vedamantra")
ArchikahNumber: Optional[int] = Field(None, description="Archikah Number of Vedamantra")
ShuktaNumber: Optional[int] = Field(None, description="Shukta Number of Vedamantra")
PrapatakNumber: Optional[int] = Field(None, description="Prapatak Number of Vedamantra")
MantraNumber: Optional[int] = Field(None, description="Mantra Number of Vedamantra")
AnuvakNumber: Optional[int] = Field(None, description="Anuvak Number of Vedamantra")
AdhyayaNumber: Optional[int] = Field(None, description="Adhyaya Number of Vedamantra")
class PadaMeaningInput(BaseModel):
pada: str = Field(description="The pada or word that is being meaning checked")
class PadaAAAInput(BaseModel):
pada: str = Field(description="The pada or word that is being meaning checked")
mantraid: Optional[str] = Field(None, description="The mantra id. For example, 1.1.1.1, 2.1.1,3.1.1.2,4.2.3.1, and 5.0.1.1.2")
scripture_name: Optional[str] = Field(None, description="Name of the scripture like RigVeda, SamaVeda, AtharvaVeda, KrishnaYajurVeda, and ShuklaYajurVeda")
KandahNumber: Optional[int] = Field(None, description="Kandah Number of Vedamantra")
MandalaNumber: Optional[int] = Field(None, description="Mandala Number of Vedamantra")
ArchikahNumber: Optional[int] = Field(None, description="Archikah Number of Vedamantra")
ShuktaNumber: Optional[int] = Field(None, description="Shukta Number of Vedamantra")
PrapatakNumber: Optional[int] = Field(None, description="Prapatak Number of Vedamantra")
MantraNumber: Optional[int] = Field(None, description="Mantra Number of Vedamantra")
AnuvakNumber: Optional[int] = Field(None, description="Anuvak Number of Vedamantra")
AdhyayaNumber: Optional[int] = Field(None, description="Adhyaya Number of Vedamantra")
class NLSQLResponse(BaseModel):
user_query: str = Field(description="user query")
class VectorResponse(BaseModel):
query: str = Field(description="User query")
class Response(BaseModel):
result: str = Field(description="The result based on the context. Provide the text in a readable format if there are unicode characters. Use only available context. If there is no context, return as 'unknown'. Do not use prior knowledge.")
explanation: str = Field(description="Explanation of the steps taken to get the result")
#function tools for mantra level
def _get_mantra_details(query):
try:
details = get_details_mantra_json(query)
return details['mantraHeader']['language'][1]
except Exception as e:
raise ValueError(f"Failed to get mantra details: {e}")
def _get_mantra_details_by_scripture(scripture_name=None, KandahNumber=None, MandalaNumber=None, ArchikahNumber=None,
ShuktaNumber=None, PrapatakNumber=None, MantraNumber=None, AnuvakNumber=None,
AdhyayaNumber=None):
try:
# Construct the base SQL query
query = "SELECT * FROM veda_content_details WHERE 1 = 1"
parameters = []
# Add conditions based on provided parameters
if scripture_name:
query += " AND scripture_name = %s"
parameters.append(scripture_name.lower())
if KandahNumber:
query += " AND KandahNumber = %s"
parameters.append(KandahNumber)
if MandalaNumber:
query += " AND MandalaNumber = %s"
parameters.append(MandalaNumber)
if ArchikahNumber:
query += " AND ArchikahNumber = %s"
parameters.append(ArchikahNumber)
if ShuktaNumber:
query += " AND ShuktaNumber = %s"
parameters.append(ShuktaNumber)
if PrapatakNumber:
query += " AND PrapatakNumber = %s"
parameters.append(PrapatakNumber)
if MantraNumber:
query += " AND MantraNumber = %s"
parameters.append(MantraNumber)
if AnuvakNumber:
query += " AND AnuvakNumber = %s"
parameters.append(AnuvakNumber)
if AdhyayaNumber:
query += " AND AdhyayaNumber = %s"
parameters.append(AdhyayaNumber)
# Execute the SQL query
results = execute_sql_query(query, parameters)
if results:
return results
else:
return None
except Exception as e:
logging.error(f"Error in _get_mantra_details_by_scripture: {e}")
def get_vedamantra_details(mantraid=None, scripture_name=None, KandahNumber=None,MandalaNumber=None, ArchikahNumber=None,
ShuktaNumber=None, PrapatakNumber=None, MantraNumber=None,
AnuvakNumber=None, AdhyayaNumber=None):
'''
This function is used to get the vedamantra such as vedamantra, padapatha, devata, chandah,
and rishi, from all Vedas (RigVeda, AtharvaVeda, SamaVeda, KrishnaYajurVeda, and ShuklaYajurVeda).
The Vedic scriptures has the following structure: \
RigVeda->Mandala->Shukta->Mantra\
SamaVeda->Archikah->Shukta->Mantra\
AtharvaVeda->Kandah->Shukta->Mantra\
ShuklaYajurVeda->Adhyaya->Mantra\
KrishnaYajurVeda->Kandah->Prapatak->Anuvak->Mantra\
Sample Questions:
1. Obtain the vedamantra of the mantra whose id is 1.1.1.1?
2. Retrieve the devata of the vedamantra from Rigveda, first mandala, first shukta, and first mantra.
3. Provide the meaning of the vedamantra from Rigveda, first mandala, first shukta, and first mantra written by Tulsi Ram.
4. Explain the adhibautic meaning of the first mantra from RigVeda, first mandala, and first shukta.
5. Identify the mantraVishaya of the vedamantra from RigVeda, first mandala, first shukta, and first mantra.
6. What is the adibhautic meaning of the mantra 1.1.1.9?
7. What is the adhyatmic meaning of the mantra 1.1.1.7?
8. What is the adhidyvic meaning of the 6th mantra from RigVeda, first mandala, and first shukta?
'''
try:
query = "" # Initialize query outside of the if-else block
if mantraid:
query = f'''SELECT mantra_json FROM veda_content WHERE mantra_number = "{mantraid}"
'''
else:
filter_df = _get_mantra_details_by_scripture(scripture_name=scripture_name, KandahNumber=KandahNumber,MandalaNumber=MandalaNumber, ArchikahNumber=ArchikahNumber,
ShuktaNumber=ShuktaNumber, PrapatakNumber=PrapatakNumber, MantraNumber=MantraNumber,
AnuvakNumber=AnuvakNumber, AdhyayaNumber=AdhyayaNumber)
if filter_df is not None:
mantra_id = filter_df[0]['mantra_id']
query = f'''SELECT mantra_json FROM veda_content WHERE mantra_number = "{mantra_id}"
'''
return _get_mantra_details(query)
except Exception as e:
return json.dumps({"error": str(e)})
def get_vedamantra_summary(mantraid=None, scripture_name=None, KandahNumber=None,MandalaNumber=None, ArchikahNumber=None,
ShuktaNumber=None, PrapatakNumber=None, MantraNumber=None,
AnuvakNumber=None, AdhyayaNumber=None):
'''
Use the function `get_vedamantra_summary` to access the information such as adibhautic meaning of the mantra, anvaya of the mantra, mantraVishaya of the mantra,
adhibautic (or adhyatmic or adhidyvic) meaning (or bhavarth) of the mantra, purpose of the mantra, usage of the mantra, and tippani of the mantra.
Sample Query:
1. Obtain the anvaya of the mantra whose id (mantraid) is 1.1.1.1?
2. Retrieve tha adibhautic meaning of the first mantra from RigVeda, first mandala, and first shukta.
'''
try:
if mantraid:
query = f"SELECT mantra_json FROM veda_content WHERE mantra_number = '{mantraid}'"
else:
filtered_df = _get_mantra_details_by_scripture(scripture_name=scripture_name, KandahNumber=KandahNumber,MandalaNumber=MandalaNumber, ArchikahNumber=ArchikahNumber,
ShuktaNumber=ShuktaNumber, PrapatakNumber=PrapatakNumber, MantraNumber=MantraNumber,
AnuvakNumber=AnuvakNumber, AdhyayaNumber=AdhyayaNumber)
if filtered_df is not None:
mantra_id = filtered_df[0]['mantra_id']
query = f"SELECT mantra_json FROM veda_content WHERE mantra_number = '{mantra_id}'"
else:
return None
json_dict = get_details_mantra_json(query)
mantra_summary = json_dict['mantraSummary']['language']
summary_dict = {"Roman-IAST summary of vedamantra": json_dict['mantraSummary']['language'][1]}
for item in mantra_summary:
if item['languageName'] == 'English':
mahatma = item['mahatma']['mahatmaName']
summary_dict[f"English summary of vedamantra by {mahatma}"] = item
return summary_dict
except Exception as e:
return {"error": str(e)}
def get_pada_meaning(pada):
'''
Purpose: For given sanskrit word, you have collection of meanings for available roots and stems of it.\
You need to process this information as context and provide possible meanings for given word.
Sample query:
1. What is the meaning of the word apratidhṛṣṭa-śavasam?
'''
#pada=iast_process(pada)
try:
query = f'''
SELECT * FROM term_details_modified WHERE Pada = "{pada}"
'''
# Execute the query to get details from the database
details = execute_sql_query(query)
#print(details)
pada_details = details[0]
#print(pada_details['Morphology'])
meanings_list = []
for morphs in ast.literal_eval(pada_details['Morphology']):
for field in ['stem', 'root']:
word = morphs.get(field)
if word:
meanings_list.append(get_list_meaning_word(word))
return meanings_list
except Exception as e:
logging.error(f"Error in get_pada_meaning: {e}")
return {"error": f"Required meaning associated with pada is not available. {e}"}
def _get_pada_details_by_scripture(pada, scripture_name=None, KandahNumber=None, MandalaNumber=None, ArchikahNumber=None,
ShuktaNumber=None, PrapatakNumber=None, MantraNumber=None, AnuvakNumber=None,
AdhyayaNumber=None):
try:
# Construct the base SQL query
query = "SELECT * FROM term_details_modified WHERE Pada = %s"
parameters = [pada]
# Add conditions based on provided parameters
if scripture_name:
query += " AND scripture_name = %s"
parameters.append(scripture_name)
if KandahNumber:
query += " AND KandahNumber = %s"
parameters.append(KandahNumber)
if MandalaNumber:
query += " AND MandalaNumber = %s"
parameters.append(MandalaNumber)
if ArchikahNumber:
query += " AND ArchikahNumber = %s"
parameters.append(ArchikahNumber)
if ShuktaNumber:
query += " AND ShuktaNumber = %s"
parameters.append(ShuktaNumber)
if PrapatakNumber:
query += " AND PrapatakNumber = %s"
parameters.append(PrapatakNumber)
if MantraNumber:
query += " AND MantraNumber = %s"
parameters.append(MantraNumber)
if AnuvakNumber:
query += " AND AnuvakNumber = %s"
parameters.append(AnuvakNumber)
if AdhyayaNumber:
query += " AND AdhyayaNumber = %s"
parameters.append(AdhyayaNumber)
# Execute the SQL query
results = execute_sql_query(query, parameters)
if results:
return results
else:
return None
except Exception as e:
logging.error(f"Error in _get_pada_details_by_scripture: {e}")
return None
def _get_vedamantra_meaning(mantraID, MahatmaName=None):
try:
query = f"SELECT mantra_json FROM veda_content WHERE mantra_number = '{mantraID}'"
jsonDict = get_details_mantra_json(query)
mantraSummary = jsonDict['mantraSummary']['language']
if MahatmaName is not None:
filtered_summary = [data_dict for data_dict in mantraSummary if data_dict.get('mahatma', {}).get('mahatmaName') == MahatmaName]
if filtered_summary:
mantraSummary = filtered_summary
best_meaning = None
best_count = 0
for data_dict in mantraSummary:
if data_dict.get('languageName') == "English":
meanings = data_dict['mahatma']['bhavartha']
count = sum(bool(meanings.get(cat, None)) for cat in ['adibhautic', 'adidaivic', 'adhyatmic'])
if count >= best_count:
best_meaning = {cat: meanings.get(cat, None) for cat in ['adibhautic', 'adidaivic', 'adhyatmic']}
best_count = count
return best_meaning if best_meaning else json.dumps({"error": "Required meaning associated with vedamantra is not available."})
except Exception as e:
logging.error(f"Error in _get_vedamantra_meaning: {e}")
return json.dumps({"error": f"An error occurred: {e}"})
def _get_pada_morphology(term_details, meanings):
try:
morphology_list = ast.literal_eval(term_details['Morphology'])
term_morph_list = []
for morphs in morphology_list:
term_info = {}
for field in ['stem', 'root']:
morph_word = morphs.get(field)
if morph_word:
meaning = word_sentence_similarity(meanings, morph_word)
term_info[f'{field}_word'] = morph_word
term_info[f'{field}_meaning'] = meaning[0][0] if meaning else None
term_info[f'{field}_score'] = meaning[0][1] if meaning else None
term_info['grammar'] = morphs['grammar']
term_morph_list.append(term_info)
return term_morph_list
except Exception as e:
logging.error(f"Error in _get_pada_morphology: {e}")
return []
def get_morphological_info_of_pada(pada, mantraid=None, scripture_name=None, KandahNumber=None, MandalaNumber=None,
ArchikahNumber=None, ShuktaNumber=None, PrapatakNumber=None, MantraNumber=None,
AnuvakNumber=None, AdhyayaNumber=None):
'''
This help to get segmentation and morphological information about the word.
'''
try:
if pada:
query = f'''SELECT * FROM term_details_modified WHERE Pada = "{pada}"
'''
details = execute_sql_query(query)
else:
# Placeholder for _get_pada_details_by_scripture function call
# Replace with your actual implementation
details = _get_pada_details_by_scripture(pada, scripture_name=scripture_name, KandahNumber=KandahNumber,
MandalaNumber=MandalaNumber, ArchikahNumber=ArchikahNumber,
ShuktaNumber=ShuktaNumber, PrapatakNumber=PrapatakNumber,
MantraNumber=MantraNumber, AnuvakNumber=AnuvakNumber,
AdhyayaNumber=AdhyayaNumber)
if details:
if mantraid is not None:
for record in details:
if record["mantra_id"] == mantraid:
segmentation = record["Segmentation"]
morphological_info = record["Morphology"]
return {"morphology_info": {"segmentation": segmentation, "morphology": morphological_info}}
return {"error": f"No details found for mantraid '{mantraid}'"}
else:
pada_details = details[0]
segmentation = pada_details["Segmentation"]
morphological_info = pada_details["Morphology"]
return {"morphology_info": {"segmentation": segmentation, "morphology": morphological_info}}
else:
return {"error": "No details found for pada."}
except Exception as e:
logging.error(f"Error in get_morphological_info_of_pada: {e}")
return {"error": f"Failed to get meaning of the word {pada}. {e}"}
def get_adibauatic_adidaivic_adhyatmic_meaning_of_pada(pada, mantraid=None, scripture_name=None,
KandahNumber=None,MandalaNumber=None, ArchikahNumber=None,
ShuktaNumber=None, PrapatakNumber=None, MantraNumber=None,
AnuvakNumber=None, AdhyayaNumber=None,MahatmaName=None):
'''
Sample query:
1. What is the adibhautic meaning of pada 'agnim' from RigVeda, first mandala, first shukta and first mantra?
2. What is the adhyatmic meaning of the pada agnim in the context of the mantra whose id is '1.1.1.1?'
'''
try:
if mantraid:
query = f'''
SELECT * FROM term_details_modified WHERE mantra_id = '{mantraid}' AND Pada = "{pada}"
'''
# Execute the query to get details from the database
details = execute_sql_query(query)
else:
# Call the function to get details by scripture
details = _get_pada_details_by_scripture(pada, scripture_name=scripture_name, KandahNumber=KandahNumber,MandalaNumber=MandalaNumber, ArchikahNumber=ArchikahNumber,
ShuktaNumber=ShuktaNumber, PrapatakNumber=PrapatakNumber, MantraNumber=MantraNumber,
AnuvakNumber=AnuvakNumber, AdhyayaNumber=AdhyayaNumber)
if details:
pada_details = details[0] # Assuming details is a list of dictionaries, select the first item
mantraID = pada_details['mantra_id']
meanings = _get_vedamantra_meaning(mantraID,MahatmaName=MahatmaName)
if 'error' in meanings:
return json.dumps(meanings)
ab_term_morph_list = _get_pada_morphology(pada_details, meanings['adibhautic'])
ad_term_morph_list = _get_pada_morphology(pada_details, meanings['adidaivic'])
at_term_morph_list = _get_pada_morphology(pada_details, meanings['adhyatmic'])
return json.dumps({
f'adibhautic_info_{pada}': ab_term_morph_list,
'vedamantra_adibhautic_meaning': meanings['adibhautic'],
f'adidavic_info_{pada}': ad_term_morph_list,
'vedamantra_adidavic_meaning': meanings['adidaivic'],
f'adhyatmic_info_{pada}': at_term_morph_list,
'vedamantra_adhyatmic_meaning': meanings['adhyatmic']
})
else:
return json.dumps({"error": f"No details found for pada '{pada}'"})
except Exception as e:
logging.error(f"Error in get_adibauatic_adidaivic_adhyatmic_meaning_of_pada: {e}")
return json.dumps({"error": f"Failed to get meaning of the word {pada}. {e}"})
# sql agent
from langchain_community.utilities.sql_database import SQLDatabase
from database import get_db
from langchain_community.agent_toolkits import create_sql_agent
from langchain_openai import ChatOpenAI
from langchain.pydantic_v1 import BaseModel, Field
from langchain.tools import StructuredTool
from typing import Optional
import json
class NLSQLResponse(BaseModel):
user_query:str = Field(description="user query")
db = get_db()
agent_executor = create_sql_agent(llm_AI4, db=db, agent_type="openai-tools", verbose=False)
def get_response(user_query):
response = agent_executor.invoke(user_query)
return response
sql_tool = StructuredTool.from_function(
func = get_response,
name = "nl_sql_query",
description="""To obtains a information using natural language query to sql query and then exceting sql query to get natural response.
Sample Query:
1. How many mantras are there in RigVeda?
2. What is the segmentation of the word 'prathasva' from KrishnaYajurVeda?""",
args_schema=NLSQLResponse,
return_direct=True,
)
pada_morphological_tool = StructuredTool.from_function(
func=get_morphological_info_of_pada,
name="pada_morphology",
description="""Purpose: To obtain morphological information such as segmentation, morphology, and grammar of a word.\
Sample query:
1. What is the segmentation and morphology of the word 'apratidhṛṣṭa-śavasam' from RigVeda?
2. What is the grammar of the word 'prathasva' from KrishnaYajurVeda?
""",
args_schema=PadaAAAInput,
return_direct=False
)
pada_meaning_tool = StructuredTool.from_function(
func=get_pada_meaning,
name="pada_meaning",
description="""Purpose: For given sanskrit word, you have collection of meanings for available roots and stems of it.\
You need to process this information as context and provide possible meanings for given word.
Sample query:
1. What is the meaning of the word apratidhṛṣṭa-śavasam?
""",
args_schema=PadaMeaningInput,
return_direct=False
)
pada_word_sense_tool = StructuredTool.from_function(
func=get_adibauatic_adidaivic_adhyatmic_meaning_of_pada,
name="pada_AAA_meaning",
description="""To obtain a complete or meaningful adibauatic/adhidaivic/adhyatmic meaning of a word or pada based on context information.\n
Sample query:
1. What is the adibhautic meaning of pada 'agnim' from RigVeda, first mandala, first shukta and first mantra?
2. What is the adhyatmic meaning of the pada agnim in the context of the mantra whose id is '1.1.1.1'?
""",
args_schema=PadaAAAInput,
return_direct=False
)
vedamantra_tool = StructuredTool.from_function(
func=get_vedamantra_details,
name="vedamantra_details",
description='''This function is used to get the vedamantra such as vedamantra, padapatha, devata, chandah,
and rishi, from all Vedas (RigVeda, AtharvaVeda, SamaVeda, KrishnaYajurVeda, and ShuklaYajurVeda).
Sample Questions:
1. Obtain the vedamantra of the mantra whose id is 1.1.1.1?
2. Retrieve the devata of the vedamantra from Rigveda, first mandala, first shukta, and first mantra.
3. Provide the meaning of the vedamantra from Rigveda, first mandala, first shukta, and first mantra written by Tulsi Ram.
4. Explain the adhibautic meaning of the first mantra from RigVeda, first mandala, and first shukta.
''',
args_schema=MantraInput,
return_direct=False
)
vedamantra_summary_tool =StructuredTool.from_function(
func=get_vedamantra_summary,
name="vedamantra_summary",
description="""Use the function `get_vedamantra_summary` to access the information such as adibhautic meaning of the mantra, anvaya of the mantra, mantraVishaya of the mantra,
adhibautic (or adhyatmic or adhidyvic) meaning (or bhavarth) of the mantra, purpose of the mantra, usage of the mantra, and tippani of the mantra.
Sample Query:
1. Obtain the anvaya of the mantra whose id (mantraid) is 1.1.1.1?
2. Retrieve tha adibhautic meaning of the first mantra from RigVeda, first mandala, and first shukta.
3. Provide the adhyatmic meaning of the mantra 1.1.1.9?
4. What is the tippani of the mantra 1.1.1.7?
5. What is the adhyatmic meaning of the mantra 1.1.1.7?
6. What is the mantravishaya of the 6th mantra from RigVeda, first mandala, and first shukta?""",
args_schema=MantraInput,
return_direct=False
)
## vector tool
import os
import time
import pickle
import streamlit as st
from dotenv import load_dotenv
from pinecone import Pinecone, ServerlessSpec
from utils import load_pickle, initialize_embedding_model
from langchain_community.retrievers import BM25Retriever
from langchain_pinecone import PineconeVectorStore
from langchain.retrievers import EnsembleRetriever
from langchain.tools.retriever import create_retriever_tool
# Load .env file
load_dotenv()
# Constants
INDEX_NAME = "veda-index-v2"
MODEL_NAME = "BAAI/bge-large-en-v1.5"
DOCS_DIRECTORY = r"Docs\ramana_docs_ids.pkl"
CURRENT_DIRECTORY = os.getcwd()
# Initialize Pinecone client
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY_SAM")
pc = Pinecone(api_key=PINECONE_API_KEY)
#@st.cache_resource
def create_or_load_index():
# Check if index already exists
if INDEX_NAME not in pc.list_indexes().names():
# Create index if it does not exist
pc.create_index(
INDEX_NAME,
dimension=1024,
metric='dotproduct',
spec=ServerlessSpec(
cloud="aws",
region="us-east-1"
)
)
# Wait for index to be initialized
while not pc.describe_index(INDEX_NAME).status['ready']:
time.sleep(1)
# Connect to index
return pc.Index(INDEX_NAME)
# Load documents
docs = load_pickle(DOCS_DIRECTORY)
# Initialize embedding model
embedding = initialize_embedding_model(MODEL_NAME)
# Create or load index
index = create_or_load_index()
# Initialize BM25 retriever
bm25_retriever = BM25Retriever.from_texts(
[text['document'].page_content for text in docs],
metadatas=[text['document'].metadata for text in docs]
)
bm25_retriever.k = 2
# Switch back to normal index for LangChain
vector_store = PineconeVectorStore(index, embedding)
retriever = vector_store.as_retriever(search_type="mmr")
# Initialize the ensemble retriever
ensemble_retriever = EnsembleRetriever(
retrievers=[bm25_retriever, retriever], weights=[0.2, 0.8]
)
class VectorResponse(BaseModel):
query:str = Field(description="user query")
def vector_retrieve(query):
response = retriever.get_relevant_documents(query)
return response
vector_tool = StructuredTool.from_function(
func = vector_retrieve,
name = "vector_retrieve",
description="Search and return documents related user query from the vector index.",
args_schema=VectorResponse,
return_direct=False
)
tools_list = [pada_morphological_tool, sql_tool, pada_meaning_tool, pada_word_sense_tool, vedamantra_tool, vedamantra_summary_tool]
#vector_tool,
# Convert tools to OpenAI functions
tools_all = [convert_to_openai_function(tool) for tool in tools_list]
# Set up the tools to execute them from the graph
from langgraph.prebuilt import ToolExecutor
tool_executor = ToolExecutor(tools_list)
#tools_response = tools_all.append(convert_to_openai_function(Response))
llm_with_tools = llm_AI4.bind_tools(tools_all)
#tool_map = {tool.name: tool for tool in tools_list}
def call_tools(msg: AIMessage) -> Runnable:
"""Simple sequential tool calling helper."""
tool_map = {tool.name: tool for tool in tools_list}
tool_calls = msg.tool_calls.copy()
for tool_call in tool_calls:
tool_call["output"] = tool_map[tool_call["name"]].invoke(tool_call["args"])
return tool_calls
#print("Invoking the chain")
tool_chain = llm_with_tools | call_tools
|