Spaces:
Sleeping
Sleeping
File size: 1,023 Bytes
310647f cd405a5 80b3f89 310647f cd405a5 559b71e 060169b cd405a5 559b71e 5c764d5 8b91f63 5c764d5 cd405a5 80b3f89 060169b cd405a5 4469b57 cd405a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import cv2
import numpy as np
import gradio as gr
from tensorflow.keras.utils import img_to_array
from tensorflow.keras.models import load_model
import os
model = load_model(r'deepfake_detection_model.h5')
def predict_image(img):
x = img_to_array(img)
x = cv2.resize(x, (256, 256), interpolation=cv2.INTER_AREA)
x /= 255.0
x = np.expand_dims(x, axis=0)
prediction = np.argmax(model.predict(x), axis=1)
if prediction == 0:
return 'Fake Image'
else:
return 'Real Image'
# Define the Gradio Interface with the desired title and description
description_html = """
<p>Upload a face image to check if it's real or morphed with deepfake</p>
"""
# Define example images and their true labels for users to choose from
custom_css = """
div {background-color: whitesmoke;}
"""
gr.Interface(
fn=predict_image,
inputs='image',
outputs='text',
title="Deepfake Image Detection",
description=description_html,
allow_flagging='never'
).launch() |