File size: 1,023 Bytes
310647f
 
cd405a5
 
 
 
 
 
 
 
 
80b3f89
310647f
 
cd405a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
559b71e
060169b
cd405a5
 
 
559b71e
5c764d5
8b91f63
5c764d5
cd405a5
 
 
80b3f89
 
060169b
cd405a5
4469b57
cd405a5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import cv2
import numpy as np 
import gradio as gr
from tensorflow.keras.utils import img_to_array
from tensorflow.keras.models import load_model
import os

model = load_model(r'deepfake_detection_model.h5')

def predict_image(img):
    
    x = img_to_array(img)

    x = cv2.resize(x, (256, 256), interpolation=cv2.INTER_AREA)
    
    x /= 255.0

    x = np.expand_dims(x, axis=0)

    prediction = np.argmax(model.predict(x), axis=1)
    
    if prediction == 0:
        return 'Fake Image'
    else:
        return 'Real Image'


# Define the Gradio Interface with the desired title and description

description_html = """

<p>Upload a face image to check if it's real or morphed with deepfake</p>
"""

# Define example images and their true labels for users to choose from

custom_css = """
div {background-color: whitesmoke;}
"""

gr.Interface(
    fn=predict_image,
    inputs='image',
    outputs='text',
    title="Deepfake Image Detection",
    description=description_html,
    allow_flagging='never'
).launch()