Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,82 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
"""
|
43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
-
"""
|
45 |
-
demo = gr.ChatInterface(
|
46 |
-
respond,
|
47 |
-
additional_inputs=[
|
48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
)
|
60 |
|
61 |
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
import gradio as gr
|
4 |
+
from openai import OpenAI
|
5 |
+
|
6 |
+
# Argument parser setup
|
7 |
+
parser = argparse.ArgumentParser(
|
8 |
+
description='Chatbot Interface with Customizable Parameters')
|
9 |
+
parser.add_argument('--model-url',
|
10 |
+
type=str,
|
11 |
+
default=' https://55ad-165-204-156-250.ngrok-free.app/v1',
|
12 |
+
help='Model URL')
|
13 |
+
parser.add_argument('-m',
|
14 |
+
'--model',
|
15 |
+
type=str,
|
16 |
+
required=True,
|
17 |
+
help='Model name for the chatbot')
|
18 |
+
parser.add_argument('--temp',
|
19 |
+
type=float,
|
20 |
+
default=0.2,
|
21 |
+
help='Temperature for text generation')
|
22 |
+
parser.add_argument('--stop-token-ids',
|
23 |
+
type=str,
|
24 |
+
default='128001,128009',
|
25 |
+
help='Comma-separated stop token IDs')
|
26 |
+
parser.add_argument("--host", type=str, default=None)
|
27 |
+
parser.add_argument("--port", type=int, default=8001)
|
28 |
+
|
29 |
+
# Parse the arguments
|
30 |
+
args = parser.parse_args()
|
31 |
+
|
32 |
+
# Set OpenAI's API key and API base to use vLLM's API server.
|
33 |
+
openai_api_key = "EMPTY"
|
34 |
+
openai_api_base = args.model_url
|
35 |
+
|
36 |
+
# Create an OpenAI client to interact with the API server
|
37 |
+
client = OpenAI(
|
38 |
+
api_key=openai_api_key,
|
39 |
+
base_url=openai_api_base,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
)
|
41 |
|
42 |
|
43 |
+
def predict(message, history):
|
44 |
+
# Convert chat history to OpenAI format
|
45 |
+
history_openai_format = [{
|
46 |
+
"role": "system",
|
47 |
+
"content": "You are a great ai assistant."
|
48 |
+
}]
|
49 |
+
for human, assistant in history:
|
50 |
+
history_openai_format.append({"role": "user", "content": human})
|
51 |
+
history_openai_format.append({
|
52 |
+
"role": "assistant",
|
53 |
+
"content": assistant
|
54 |
+
})
|
55 |
+
history_openai_format.append({"role": "user", "content": message})
|
56 |
+
|
57 |
+
# Create a chat completion request and send it to the API server
|
58 |
+
stream = client.chat.completions.create(
|
59 |
+
model="/app/model/llama3_8b_lora_indica_sft/", # Model name to use
|
60 |
+
messages=history_openai_format, # Chat history
|
61 |
+
temperature=args.temp, # Temperature for text generation
|
62 |
+
stream=True, # Stream response
|
63 |
+
extra_body={
|
64 |
+
'repetition_penalty':
|
65 |
+
1,
|
66 |
+
'stop_token_ids': [
|
67 |
+
int(id.strip()) for id in args.stop_token_ids.split(',')
|
68 |
+
if id.strip()
|
69 |
+
] if args.stop_token_ids else []
|
70 |
+
})
|
71 |
+
|
72 |
+
# Read and return generated text from response stream
|
73 |
+
partial_message = ""
|
74 |
+
for chunk in stream:
|
75 |
+
partial_message += (chunk.choices[0].delta.content or "")
|
76 |
+
yield partial_message
|
77 |
+
|
78 |
+
|
79 |
+
# Create and launch a chat interface with Gradio
|
80 |
+
gr.ChatInterface(predict).queue().launch(server_name=args.host,
|
81 |
+
server_port=args.port,
|
82 |
+
share=True)
|