sam2ai commited on
Commit
c3c3a02
·
verified ·
1 Parent(s): a7d38ad

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +78 -59
app.py CHANGED
@@ -1,63 +1,82 @@
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
  )
60
 
61
 
62
- if __name__ == "__main__":
63
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+
3
  import gradio as gr
4
+ from openai import OpenAI
5
+
6
+ # Argument parser setup
7
+ parser = argparse.ArgumentParser(
8
+ description='Chatbot Interface with Customizable Parameters')
9
+ parser.add_argument('--model-url',
10
+ type=str,
11
+ default=' https://55ad-165-204-156-250.ngrok-free.app/v1',
12
+ help='Model URL')
13
+ parser.add_argument('-m',
14
+ '--model',
15
+ type=str,
16
+ required=True,
17
+ help='Model name for the chatbot')
18
+ parser.add_argument('--temp',
19
+ type=float,
20
+ default=0.2,
21
+ help='Temperature for text generation')
22
+ parser.add_argument('--stop-token-ids',
23
+ type=str,
24
+ default='128001,128009',
25
+ help='Comma-separated stop token IDs')
26
+ parser.add_argument("--host", type=str, default=None)
27
+ parser.add_argument("--port", type=int, default=8001)
28
+
29
+ # Parse the arguments
30
+ args = parser.parse_args()
31
+
32
+ # Set OpenAI's API key and API base to use vLLM's API server.
33
+ openai_api_key = "EMPTY"
34
+ openai_api_base = args.model_url
35
+
36
+ # Create an OpenAI client to interact with the API server
37
+ client = OpenAI(
38
+ api_key=openai_api_key,
39
+ base_url=openai_api_base,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  )
41
 
42
 
43
+ def predict(message, history):
44
+ # Convert chat history to OpenAI format
45
+ history_openai_format = [{
46
+ "role": "system",
47
+ "content": "You are a great ai assistant."
48
+ }]
49
+ for human, assistant in history:
50
+ history_openai_format.append({"role": "user", "content": human})
51
+ history_openai_format.append({
52
+ "role": "assistant",
53
+ "content": assistant
54
+ })
55
+ history_openai_format.append({"role": "user", "content": message})
56
+
57
+ # Create a chat completion request and send it to the API server
58
+ stream = client.chat.completions.create(
59
+ model="/app/model/llama3_8b_lora_indica_sft/", # Model name to use
60
+ messages=history_openai_format, # Chat history
61
+ temperature=args.temp, # Temperature for text generation
62
+ stream=True, # Stream response
63
+ extra_body={
64
+ 'repetition_penalty':
65
+ 1,
66
+ 'stop_token_ids': [
67
+ int(id.strip()) for id in args.stop_token_ids.split(',')
68
+ if id.strip()
69
+ ] if args.stop_token_ids else []
70
+ })
71
+
72
+ # Read and return generated text from response stream
73
+ partial_message = ""
74
+ for chunk in stream:
75
+ partial_message += (chunk.choices[0].delta.content or "")
76
+ yield partial_message
77
+
78
+
79
+ # Create and launch a chat interface with Gradio
80
+ gr.ChatInterface(predict).queue().launch(server_name=args.host,
81
+ server_port=args.port,
82
+ share=True)