import gradio as gr def load_model(model_link): return "model" def update_config(quantization_type, bits, threshold): # Configuration logic here return {"quantization": quantization_type, "bits": bits, "threshold": threshold} def run_benchmark(model, config): # Benchmarking logic here return {"speed": "X ms/token", "memory": "Y GB"} # Create the interface with gr.Blocks() as demo: with gr.Tab("Model Loading"): model_input = gr.Textbox(label="Hugging Face Model Link") model_type = gr.Dropdown(choices=["LLM", "CV", "MLP"], label="Model Type") model = gr.Dropdown(choices=["BERT", "GPT", "T5"], label="Model") load_btn = gr.Button("Load Model") with gr.Tab("Quantization"): quant_type = gr.Dropdown(choices=["awg", "gptq", "4bit"], label="Quantization Type") bits = gr.Slider(minimum=4, maximum=8, step=1, label="Bits") threshold = gr.Slider(minimum=0, maximum=1, label="Threshold") with gr.Tab("Benchmarking"): data_input = gr.Textbox(label="Hugging Face data Input") benchmark_btn = gr.Button("Run Benchmark") results = gr.JSON(label="Benchmark Results") # Set up event handlers load_btn.click(load_model, inputs=[model_input]) benchmark_btn.click( run_benchmark, inputs=[model_type, quant_type, bits, threshold], outputs=[results] ) demo.launch()