sachinchandrankallar commited on
Commit
27b3d70
·
1 Parent(s): 38b2330

max new tokens

Browse files
Files changed (1) hide show
  1. ai_med_extract/api/routes.py +2 -2
ai_med_extract/api/routes.py CHANGED
@@ -388,7 +388,7 @@ def register_routes(app, agents):
388
  import torch
389
  torch.set_num_threads(2)
390
  inputs = pipeline.tokenizer([prompt], return_tensors="pt")
391
- outputs = pipeline.model.generate(**inputs, max_new_tokens=1000, do_sample=False, pad_token_id=pipeline.tokenizer.eos_token_id or 32000)
392
  text = pipeline.tokenizer.decode(outputs[0], skip_special_tokens=True)
393
 
394
  # Robust summary extraction with fallback
@@ -1250,7 +1250,7 @@ def register_routes(app, agents):
1250
  if not pipeline:
1251
  return jsonify({"error": "Model pipeline not available"}), 500
1252
  inputs = pipeline.tokenizer([prompt], return_tensors="pt")
1253
- outputs = pipeline.model.generate(**inputs, max_new_tokens=1000, do_sample=False, pad_token_id=pipeline.tokenizer.eos_token_id or 32000)
1254
  text = pipeline.tokenizer.decode(outputs[0], skip_special_tokens=True)
1255
  new_summary = text.split("Now generate the complete, updated clinical summary with all four sections in a markdown format:")[-1].strip()
1256
  # For other models, after extracting new_summary:
 
388
  import torch
389
  torch.set_num_threads(2)
390
  inputs = pipeline.tokenizer([prompt], return_tensors="pt")
391
+ outputs = pipeline.model.generate(**inputs, max_new_tokens=4000, do_sample=False, pad_token_id=pipeline.tokenizer.eos_token_id or 32000)
392
  text = pipeline.tokenizer.decode(outputs[0], skip_special_tokens=True)
393
 
394
  # Robust summary extraction with fallback
 
1250
  if not pipeline:
1251
  return jsonify({"error": "Model pipeline not available"}), 500
1252
  inputs = pipeline.tokenizer([prompt], return_tensors="pt")
1253
+ outputs = pipeline.model.generate(**inputs, max_new_tokens=4000, do_sample=False, pad_token_id=pipeline.tokenizer.eos_token_id or 32000)
1254
  text = pipeline.tokenizer.decode(outputs[0], skip_special_tokens=True)
1255
  new_summary = text.split("Now generate the complete, updated clinical summary with all four sections in a markdown format:")[-1].strip()
1256
  # For other models, after extracting new_summary: