Spaces:
Running
Running
File size: 12,153 Bytes
c6f267d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
# HNTAI Medical Data Extraction - Refactored System
## Overview
This project has been completely refactored to provide a unified, flexible model management system that supports **any model name and type**, including GGUF models for patient summary generation. The system now offers dynamic model loading, runtime model switching, and robust fallback mechanisms.
## ๐ Key Features
### โจ **Universal Model Support**
- **Any Model Name**: Use any Hugging Face model, local model, or custom model
- **Any Model Type**: Support for text-generation, summarization, NER, GGUF, OpenVINO, and more
- **Automatic Type Detection**: The system automatically detects model types from names
- **Dynamic Loading**: Load models at runtime without restarting the application
### ๐ **GGUF Model Integration**
- **Seamless GGUF Support**: Full integration with llama.cpp for GGUF models
- **Patient Summary Generation**: Optimized for medical text summarization
- **Memory Efficient**: Ultra-conservative settings for Hugging Face Spaces
- **Fallback Mechanisms**: Automatic fallback when GGUF models fail
### ๐ง **Unified Model Manager**
- **Single Interface**: One manager handles all model types
- **Smart Caching**: Intelligent model caching with memory management
- **Fallback Chains**: Multiple fallback options for robustness
- **Performance Monitoring**: Built-in timing and memory tracking
## ๐๏ธ Architecture
### Core Components
1. **`UnifiedModelManager`** - Central model management system
2. **`BaseModelLoader`** - Abstract interface for all model loaders
3. **`TransformersModelLoader`** - Hugging Face Transformers models
4. **`GGUFModelLoader`** - GGUF models via llama.cpp
5. **`OpenVINOModelLoader`** - OpenVINO optimized models
6. **`PatientSummarizerAgent`** - Enhanced patient summary generation
### Model Type Support
| Model Type | Description | Example Models |
|------------|-------------|----------------|
| `text-generation` | Causal language models | `facebook/bart-base`, `microsoft/DialoGPT-medium` |
| `summarization` | Text summarization models | `Falconsai/medical_summarization`, `facebook/bart-large-cnn` |
| `ner` | Named Entity Recognition | `dslim/bert-base-NER`, `Jean-Baptiste/roberta-large-ner-english` |
| `gguf` | GGUF format models | `microsoft/Phi-3-mini-4k-instruct-gguf` |
| `openvino` | OpenVINO optimized models | `microsoft/Phi-3-mini-4k-instruct` |
## ๐ Quick Start
### 1. Basic Usage
```python
from ai_med_extract.utils.model_manager import model_manager
# Load any model dynamically
loader = model_manager.get_model_loader(
model_name="microsoft/Phi-3-mini-4k-instruct-gguf",
model_type="gguf",
filename="Phi-3-mini-4k-instruct-q4.gguf"
)
# Generate text
result = loader.generate("Generate a medical summary for...")
```
### 2. Patient Summary Generation
```python
from ai_med_extract.agents.patient_summary_agent import PatientSummarizerAgent
# Create agent with any model
agent = PatientSummarizerAgent(
model_name="microsoft/Phi-3-mini-4k-instruct-gguf",
model_type="gguf"
)
# Generate clinical summary
summary = agent.generate_clinical_summary(patient_data)
```
### 3. Runtime Model Switching
```python
# Switch models at runtime
agent.update_model(
model_name="Falconsai/medical_summarization",
model_type="summarization"
)
```
## ๐ก API Endpoints
### Model Management API
#### Load Model
```http
POST /api/models/load
Content-Type: application/json
{
"model_name": "microsoft/Phi-3-mini-4k-instruct-gguf",
"model_type": "gguf",
"filename": "Phi-3-mini-4k-instruct-q4.gguf",
"force_reload": false
}
```
#### Generate Text
```http
POST /api/models/generate
Content-Type: application/json
{
"model_name": "microsoft/Phi-3-mini-4k-instruct-gguf",
"model_type": "gguf",
"prompt": "Generate a medical summary for...",
"max_tokens": 512,
"temperature": 0.7
}
```
#### Switch Agent Model
```http
POST /api/models/switch
Content-Type: application/json
{
"agent_name": "patient_summarizer",
"model_name": "microsoft/Phi-3-mini-4k-instruct-gguf",
"model_type": "gguf"
}
```
#### Get Model Information
```http
GET /api/models/info?model_name=microsoft/Phi-3-mini-4k-instruct-gguf
```
#### Health Check
```http
GET /api/models/health
```
### Patient Summary API
#### Generate Patient Summary
```http
POST /generate_patient_summary
Content-Type: application/json
{
"patientid": "12345",
"token": "your_token",
"key": "your_api_key",
"patient_summarizer_model_name": "microsoft/Phi-3-mini-4k-instruct-gguf",
"patient_summarizer_model_type": "gguf"
}
```
## ๐ง Configuration
### Environment Variables
```bash
# Cache directories
HF_HOME=/tmp/huggingface
XDG_CACHE_HOME=/tmp
TORCH_HOME=/tmp/torch
WHISPER_CACHE=/tmp/whisper
# GGUF optimization
GGUF_N_THREADS=2
GGUF_N_BATCH=64
```
### Model Configuration
The system automatically uses optimized models for different environments:
- **Local Development**: Full model capabilities
- **Hugging Face Spaces**: Memory-optimized models
- **Production**: Configurable based on resources
## ๐ฏ Use Cases
### 1. **Medical Document Processing**
```python
# Extract medical data with any model
medical_data = model_manager.generate_text(
model_name="facebook/bart-base",
model_type="text-generation",
prompt="Extract medical entities from: " + document_text
)
```
### 2. **Patient Summary Generation**
```python
# Use GGUF model for patient summaries
summary = model_manager.generate_text(
model_name="microsoft/Phi-3-mini-4k-instruct-gguf",
model_type="gguf",
prompt=patient_data_prompt,
max_tokens=512
)
```
### 3. **Dynamic Model Switching**
```python
# Switch between models based on task requirements
if task == "summarization":
model_name = "Falconsai/medical_summarization"
model_type = "summarization"
elif task == "extraction":
model_name = "facebook/bart-base"
model_type = "text-generation"
loader = model_manager.get_model_loader(model_name, model_type)
```
## ๐ Memory Management
### Hugging Face Spaces Optimization
The system automatically detects Hugging Face Spaces and applies ultra-conservative memory settings:
- **GGUF Models**: 1 thread, 16 batch size, 512 context
- **Transformers**: Float32 precision, minimal memory usage
- **Automatic Fallbacks**: Graceful degradation when memory is limited
### Memory Monitoring
```python
# Check memory usage
health = requests.get("/api/models/health").json()
print(f"GPU Memory: {health['gpu_info']['memory_allocated']}")
print(f"Loaded Models: {health['loaded_models_count']}")
```
## ๐งช Testing
### Test GGUF Models
```bash
# Test GGUF model loading
python test_gguf.py
# Test specific model
python -c "
from ai_med_extract.utils.model_manager import model_manager
loader = model_manager.get_model_loader('microsoft/Phi-3-mini-4k-instruct-gguf', 'gguf')
result = loader.generate('Test prompt')
print(f'Success: {len(result)} characters generated')
"
```
### Model Validation
```python
from ai_med_extract.utils.model_config import validate_model_config
# Validate model configuration
validation = validate_model_config(
model_name="microsoft/Phi-3-mini-4k-instruct-gguf",
model_type="gguf"
)
print(f"Valid: {validation['valid']}")
print(f"Warnings: {validation['warnings']}")
```
## ๐จ Error Handling
### Fallback Mechanisms
1. **Primary Model**: Attempts to load the specified model
2. **Fallback Model**: Uses predefined fallback for the model type
3. **Text Fallback**: Generates structured text responses
4. **Graceful Degradation**: Continues operation with reduced functionality
### Common Issues
#### GGUF Model Loading Fails
```python
# Check model file
if not os.path.exists(model_path):
# Download from Hugging Face
from huggingface_hub import hf_hub_download
model_path = hf_hub_download(repo_id, filename)
```
#### Memory Issues
```python
# Clear cache and reload
model_manager.clear_cache()
torch.cuda.empty_cache()
# Use smaller model
loader = model_manager.get_model_loader(
model_name="facebook/bart-base", # Smaller model
model_type="text-generation"
)
```
## ๐ Performance
### Benchmarking
```python
import time
# Time model loading
start = time.time()
loader = model_manager.get_model_loader(model_name, model_type)
load_time = time.time() - start
# Time generation
start = time.time()
result = loader.generate(prompt)
gen_time = time.time() - start
print(f"Load: {load_time:.2f}s, Generate: {gen_time:.2f}s")
```
### Optimization Tips
1. **Use Appropriate Model Size**: Smaller models for limited resources
2. **Enable Caching**: Models are cached after first load
3. **Batch Processing**: Process multiple requests together
4. **Memory Monitoring**: Regular health checks
## ๐ฎ Future Enhancements
### Planned Features
- **Model Quantization**: Automatic model optimization
- **Distributed Loading**: Load models across multiple devices
- **Model Versioning**: Track and manage model versions
- **Performance Analytics**: Detailed performance metrics
- **Auto-scaling**: Automatic model scaling based on load
### Extensibility
The system is designed for easy extension:
```python
class CustomModelLoader(BaseModelLoader):
def __init__(self, model_name: str):
self.model_name = model_name
def load(self):
# Custom loading logic
pass
def generate(self, prompt: str, **kwargs):
# Custom generation logic
pass
```
## ๐ Migration Guide
### From Old System
1. **Replace Hardcoded Models**:
```python
# Old
model = LazyModelLoader("facebook/bart-base", "text-generation")
# New
model = model_manager.get_model_loader("facebook/bart-base", "text-generation")
```
2. **Update Patient Summarizer**:
```python
# Old
agent = PatientSummarizerAgent()
# New
agent = PatientSummarizerAgent(
model_name="microsoft/Phi-3-mini-4k-instruct-gguf",
model_type="gguf"
)
```
3. **Use Dynamic Model Selection**:
```python
# Old: Fixed model types
# New: Dynamic model selection
model_type = request.form.get("model_type", "text-generation")
model_name = request.form.get("model_name", "facebook/bart-base")
```
## ๐ค Contributing
### Development Setup
```bash
# Clone repository
git clone <repository-url>
cd HNTAI
# Install dependencies
pip install -r requirements.txt
# Run tests
python -m pytest tests/
# Start development server
python -m ai_med_extract.app
```
### Adding New Model Types
1. **Create Loader Class**:
```python
class CustomModelLoader(BaseModelLoader):
# Implement required methods
pass
```
2. **Update Model Manager**:
```python
if model_type == "custom":
loader = CustomModelLoader(model_name)
```
3. **Add Configuration**:
```python
DEFAULT_MODELS["custom"] = {
"primary": "default/custom-model",
"fallback": "fallback/custom-model"
}
```
## ๐ License
This project is licensed under the MIT License - see the LICENSE file for details.
## ๐ Support
### Getting Help
- **Documentation**: This README and inline code comments
- **Issues**: GitHub Issues for bug reports
- **Discussions**: GitHub Discussions for questions
- **Examples**: See `test_gguf.py` and other test files
### Common Questions
**Q: Can I use my own GGUF model?**
A: Yes! Just provide the path to your .gguf file or upload it to Hugging Face.
**Q: How do I optimize for memory?**
A: Use smaller models, enable caching, and monitor memory usage via `/api/models/health`.
**Q: Can I switch models without restarting?**
A: Yes! Use the `/api/models/switch` endpoint to change models at runtime.
**Q: What if a model fails to load?**
A: The system automatically falls back to alternative models and provides detailed error information.
---
**๐ Congratulations!** You now have a powerful, flexible system that can work with any model name and type, including GGUF models for patient summary generation. The system is designed to be robust, efficient, and easy to use while maintaining backward compatibility.
|