Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,9 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
import base64
|
| 3 |
import io
|
| 4 |
from huggingface_hub import InferenceClient
|
| 5 |
from gtts import gTTS
|
| 6 |
from audiorecorder import audiorecorder
|
| 7 |
import speech_recognition as sr
|
| 8 |
-
from pydub import AudioSegment
|
| 9 |
|
| 10 |
pre_prompt_text = "eres una IA conductual, tus respuestas serán breves."
|
| 11 |
|
|
@@ -17,10 +15,16 @@ if "pre_prompt_sent" not in st.session_state:
|
|
| 17 |
|
| 18 |
def recognize_speech(audio_data, show_messages=True):
|
| 19 |
recognizer = sr.Recognizer()
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
with audio_recording as source:
|
| 23 |
audio = recognizer.record(source)
|
|
|
|
| 24 |
try:
|
| 25 |
audio_text = recognizer.recognize_google(audio, language="es-ES")
|
| 26 |
if show_messages:
|
|
@@ -71,20 +75,15 @@ def generate(audio_text, history, temperature=None, max_new_tokens=512, top_p=0.
|
|
| 71 |
response += response_token.token.text
|
| 72 |
|
| 73 |
response = ' '.join(response.split()).replace('</s>', '')
|
| 74 |
-
audio_file = text_to_speech(response
|
| 75 |
return response, audio_file
|
| 76 |
|
| 77 |
-
def text_to_speech(text
|
| 78 |
tts = gTTS(text=text, lang='es')
|
| 79 |
audio_fp = io.BytesIO()
|
| 80 |
tts.write_to_fp(audio_fp)
|
| 81 |
audio_fp.seek(0)
|
| 82 |
-
|
| 83 |
-
modified_speed_audio = audio.speedup(playback_speed=speed)
|
| 84 |
-
modified_audio_fp = io.BytesIO()
|
| 85 |
-
modified_speed_audio.export(modified_audio_fp, format="mp3")
|
| 86 |
-
modified_audio_fp.seek(0)
|
| 87 |
-
return modified_audio_fp
|
| 88 |
|
| 89 |
def audio_play(audio_file):
|
| 90 |
if audio_file is not None:
|
|
@@ -103,10 +102,10 @@ def main():
|
|
| 103 |
|
| 104 |
audio_bytes = audiorecorder("Hablar ▶️", "Detener 🛑")
|
| 105 |
if audio_bytes:
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
audio_text = recognize_speech(
|
| 109 |
-
|
| 110 |
if audio_text:
|
| 111 |
output, audio_file = generate(audio_text, history=st.session_state.history)
|
| 112 |
display_recognition_result(audio_text, output, audio_file)
|
|
|
|
| 1 |
import streamlit as st
|
|
|
|
| 2 |
import io
|
| 3 |
from huggingface_hub import InferenceClient
|
| 4 |
from gtts import gTTS
|
| 5 |
from audiorecorder import audiorecorder
|
| 6 |
import speech_recognition as sr
|
|
|
|
| 7 |
|
| 8 |
pre_prompt_text = "eres una IA conductual, tus respuestas serán breves."
|
| 9 |
|
|
|
|
| 15 |
|
| 16 |
def recognize_speech(audio_data, show_messages=True):
|
| 17 |
recognizer = sr.Recognizer()
|
| 18 |
+
|
| 19 |
+
audio_filename = "temp_audio_file.wav"
|
| 20 |
+
with open(audio_filename, "wb") as f:
|
| 21 |
+
f.write(audio_data.read())
|
| 22 |
+
|
| 23 |
+
audio_recording = sr.AudioFile(audio_filename)
|
| 24 |
|
| 25 |
with audio_recording as source:
|
| 26 |
audio = recognizer.record(source)
|
| 27 |
+
|
| 28 |
try:
|
| 29 |
audio_text = recognizer.recognize_google(audio, language="es-ES")
|
| 30 |
if show_messages:
|
|
|
|
| 75 |
response += response_token.token.text
|
| 76 |
|
| 77 |
response = ' '.join(response.split()).replace('</s>', '')
|
| 78 |
+
audio_file = text_to_speech(response)
|
| 79 |
return response, audio_file
|
| 80 |
|
| 81 |
+
def text_to_speech(text):
|
| 82 |
tts = gTTS(text=text, lang='es')
|
| 83 |
audio_fp = io.BytesIO()
|
| 84 |
tts.write_to_fp(audio_fp)
|
| 85 |
audio_fp.seek(0)
|
| 86 |
+
return audio_fp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
def audio_play(audio_file):
|
| 89 |
if audio_file is not None:
|
|
|
|
| 102 |
|
| 103 |
audio_bytes = audiorecorder("Hablar ▶️", "Detener 🛑")
|
| 104 |
if audio_bytes:
|
| 105 |
+
audio_data = io.BytesIO(audio_bytes)
|
| 106 |
+
audio_data.seek(0)
|
| 107 |
+
audio_text = recognize_speech(audio_data)
|
| 108 |
+
|
| 109 |
if audio_text:
|
| 110 |
output, audio_file = generate(audio_text, history=st.session_state.history)
|
| 111 |
display_recognition_result(audio_text, output, audio_file)
|