Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import Tacotron2Processor, Tacotron2ForTextToSpeech, WaveglowForVocoder
|
4 |
+
import soundfile as sf
|
5 |
+
|
6 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
7 |
+
|
8 |
+
processor = Tacotron2Processor.from_pretrained("facebook/tts-transformer-multilingual")
|
9 |
+
model = Tacotron2ForTextToSpeech.from_pretrained("facebook/tts-transformer-multilingual").to(device)
|
10 |
+
vocoder = WaveglowForVocoder.from_pretrained("facebook/tts-transformer-multilingual").to(device)
|
11 |
+
|
12 |
+
def text_to_speech(text):
|
13 |
+
inputs = processor(text=text, return_tensors="pt")
|
14 |
+
mel_outputs = model(**inputs.to(device)).mel_outputs
|
15 |
+
with torch.no_grad():
|
16 |
+
waveform = vocoder(mel_outputs)
|
17 |
+
waveform = waveform.cpu().numpy()
|
18 |
+
sf.write("output.wav", waveform.T, samplerate=22050)
|
19 |
+
return "output.wav"
|
20 |
+
|
21 |
+
iface = gr.Interface(
|
22 |
+
fn=text_to_speech,
|
23 |
+
inputs=gr.Textbox(lines=2, placeholder="متن خود را اینجا وارد کنید..."),
|
24 |
+
outputs="audio",
|
25 |
+
title="تبدیل متن فارسی به صدا",
|
26 |
+
description="متن فارسی خود را وارد کنید تا صدای آن را دریافت کنید.",
|
27 |
+
)
|
28 |
+
|
29 |
+
iface.launch()
|