File size: 7,072 Bytes
1c203f9 44a6f1e 1c203f9 44a6f1e 1c203f9 44a6f1e b98ce2d 44a6f1e 1c203f9 44a6f1e 52cdfd2 44a6f1e 52cdfd2 44a6f1e 52cdfd2 44a6f1e 1c203f9 f37f4b4 52cdfd2 f37f4b4 1c203f9 f37f4b4 1c203f9 f37f4b4 1c203f9 f37f4b4 1c203f9 f37f4b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
# import sklearn
import gradio as gr
# import joblib
import pandas as pd
import numpy as np
import lightgbm as lgb
from sklearn.model_selection import train_test_split
from PIL import Image
# import datasets
# pipe = joblib.load("./model.pkl")
title = "RegMix: Data Mixture as Regression for Language Model Pre-training"
description = "We propose a regression-based method to find high-performing data mixture for language model pre-training."
def infer(inputs, additional_inputs):
df = pd.DataFrame(inputs, columns=headers)
X_columns = df.columns[0:-1]
y_column = df.columns[-1]
df_train, df_val = train_test_split(df, test_size=0.125, random_state=42)
hyper_params = {
'task': 'train',
'boosting_type': 'gbdt',
'objective': 'regression',
'metric': ['l1','l2'],
"num_iterations": 1000,
'seed': 42,
'learning_rate': 1e-2,
}
target = df_train[y_column]
eval_target = df_val[y_column]
np.random.seed(42)
gbm = lgb.LGBMRegressor(**hyper_params)
reg = gbm.fit(df_train[X_columns].values, target,
eval_set=[(df_val[X_columns].values, eval_target)],
eval_metric='l2',
callbacks=[
lgb.early_stopping(stopping_rounds=3),
]
)
predictions = reg.predict(df_val[X_columns].values)
df_val['Prediction'] = predictions
####
import matplotlib.pyplot as plt
plt.rcParams["font.family"] = "Times New Roman" # !!!!
plt.rcParams.update({'font.size': 24})
plt.rcParams.update({'axes.labelpad': 20})
from matplotlib import cm
from matplotlib.ticker import LinearLocator
fig, ax = plt.subplots(figsize=(12, 12), layout='compressed', subplot_kw={"projection": "3d"})
stride = 0.025
X = np.arange(0, 1+stride, stride)
Y = np.arange(0, 1+stride, stride)
X, Y = np.meshgrid(X, Y)
Z = []
for (x,y) in zip(X.reshape(-1), Y.reshape(-1)):
if (x+y)>1:
Z.append(np.inf)
else:
Z.append(
reg.predict(np.asarray([x, y, 1-x-y]).reshape(1, -1)
)[0])
Z = np.asarray(Z).reshape(len(np.arange(0, 1+stride, stride)), len(np.arange(0, 1+stride, stride)))
# Plot the surface.
surf = ax.plot_surface(X, Y, Z,
edgecolor='white',
lw=0.5, rstride=2, cstride=2,
alpha=0.85,
cmap='coolwarm',
vmin=min(Z[Z!=np.inf]),
vmax=max(Z[Z!=np.inf]),
# linewidth=8,
antialiased=False, )
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter('{x:.02f}')
ax.view_init(elev=25, azim=45, roll=0) #####
ax.contourf(X, Y, Z, zdir='z',
offset=np.min(Z)-0.35,
cmap=cm.coolwarm)
from matplotlib.patches import Circle
from mpl_toolkits.mplot3d import art3d
def add_point(ax, x, y, z, fc = None, ec = None, radius = 0.005):
xy_len, z_len = ax.get_figure().get_size_inches()
axis_length = [x[1] - x[0] for x in [ax.get_xbound(), ax.get_ybound(), ax.get_zbound()]]
axis_rotation = {'z': ((x, y, z), axis_length[1]/axis_length[0]),
'y': ((x, z, y), axis_length[2]/axis_length[0]*xy_len/z_len),
'x': ((y, z, x), axis_length[2]/axis_length[1]*xy_len/z_len)}
for a, ((x0, y0, z0), ratio) in axis_rotation.items():
p = Circle((x0, y0), radius, lw=1.5,
# width = radius, height = radius*ratio,
fc=fc,
ec=ec)
ax.add_patch(p)
art3d.pathpatch_2d_to_3d(p, z=z0, zdir=a)
add_point(ax, X.reshape(-1)[np.argmin(Z)], Y.reshape(-1)[np.argmin(Z)], np.min(Z),
fc='Red',
ec='Red', radius=0.015)
add_point(ax, X.reshape(-1)[np.argmin(Z)], Y.reshape(-1)[np.argmin(Z)], np.min(Z)-0.35,
fc='Red',
ec='Red', radius=0.015)
ax.set_xlabel('Github (%)', fontdict={
'size':24
})
ax.set_ylabel('Hacker News (%)', fontdict={
'size':24
})
ax.set_xticks(np.arange(0, 1, 0.2), [str(np.round(num, 1)) for num in np.arange(0, 100, 20)], )
ax.set_yticks(np.arange(0, 1, 0.2), [str(np.round(num, 1)) for num in np.arange(0, 100, 20)], )
ax.set_zticks(np.arange(np.min(Z), np.max(Z[Z!=np.inf]), 0.2), [str(np.round(num, 1)) for num in np.arange(np.min(Z), np.max(Z[Z!=np.inf]), 0.2)], )
ax.zaxis.labelpad=1
ax.set_zlim(np.min(Z)-0.35, max(Z[Z!=np.inf])+0.01)
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
ax.set_box_aspect(aspect=None, zoom=0.775)
ax.zaxis._axinfo['juggled'] = (1,2,2)
# Add a color bar which maps values to colors.
cbar = fig.colorbar(surf,
shrink=0.5,
aspect=25, pad=0.01
)
cbar.ax.set_ylabel('Prediction', fontdict={
'size':32
},
# rotation=270,
# labelpad=-90
)
filename = "tmp.png"
plt.savefig(filename, bbox_inches='tight', pad_inches=0.1)
####
return [gr.ScatterPlot(
value=df_val,
x="Prediction",
y="Target",
title="Scatter",
tooltip=["Prediction", "Target"],
x_lim=[min(min(predictions), min(df_val[y_column]))-0.25, max(max(predictions), max(df_val[y_column]))+0.25],
y_lim=[min(min(predictions), min(df_val[y_column]))-0.25, max(max(predictions), max(df_val[y_column]))+0.25]
),
gr.Image(Image.open('tmp.png')),
df_val[['Target', 'Prediction']], ]
def upload_csv(file):
df = pd.read_csv(file.name,
# encoding='utf-8'
)
# Return as formatted string
# print(df.head())
return df
df = pd.read_csv('data.csv')
headers = df.columns.tolist()
inputs = [gr.Dataframe(headers=headers, row_count = (8, "dynamic"), datatype='number', col_count=(4,"fixed"), label="Dataset", interactive=1)]
outputs = [gr.ScatterPlot(), gr.Image(), gr.Dataframe(row_count = (2, "dynamic"), col_count=(2, "fixed"), datatype='number', label="Results", headers=["Target", "Prediction"])]
with gr.Blocks() as demo:
####
upload_button = gr.UploadButton(label="Upload", file_types = ['.csv'],
# live=True,
file_count = "single", render=False)
upload_button.upload(fn=upload_csv, inputs=upload_button, outputs=inputs, api_name="upload_csv")
####
gr.Interface(infer, inputs=inputs, outputs=outputs, title=title,
additional_inputs = [upload_button],
additional_inputs_accordion='Upload CSV',
description = description,
examples=[[df], []],
cache_examples=False, allow_flagging='never')
demo.launch(debug=False) |