File size: 7,072 Bytes
1c203f9
44a6f1e
1c203f9
44a6f1e
 
 
 
 
1c203f9
 
 
44a6f1e
b98ce2d
 
44a6f1e
1c203f9
44a6f1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52cdfd2
44a6f1e
52cdfd2
44a6f1e
 
 
 
52cdfd2
44a6f1e
1c203f9
f37f4b4
 
 
 
 
 
 
 
 
 
 
52cdfd2
f37f4b4
 
1c203f9
 
f37f4b4
 
1c203f9
 
 
f37f4b4
1c203f9
 
 
 
 
 
f37f4b4
1c203f9
f37f4b4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# import sklearn
import gradio as gr
# import joblib
import pandas as pd
import numpy as np
import lightgbm as lgb
from sklearn.model_selection import train_test_split
from PIL import Image
# import datasets

# pipe = joblib.load("./model.pkl")

title = "RegMix: Data Mixture as Regression for Language Model Pre-training"
description = "We propose a regression-based method to find high-performing data mixture for language model pre-training."

def infer(inputs, additional_inputs):
    df = pd.DataFrame(inputs, columns=headers)
    
    X_columns = df.columns[0:-1]
    y_column = df.columns[-1]

    df_train, df_val = train_test_split(df, test_size=0.125, random_state=42)

    hyper_params = {
        'task': 'train',
        'boosting_type': 'gbdt',
        'objective': 'regression',
        'metric': ['l1','l2'],
        "num_iterations": 1000, 
        'seed': 42,
        'learning_rate': 1e-2,
    }

    target = df_train[y_column]
    eval_target = df_val[y_column]
        
    np.random.seed(42)

    gbm = lgb.LGBMRegressor(**hyper_params)

    reg = gbm.fit(df_train[X_columns].values, target,
        eval_set=[(df_val[X_columns].values, eval_target)],
        eval_metric='l2',
    callbacks=[
        lgb.early_stopping(stopping_rounds=3),
    ]
        )
    
    predictions = reg.predict(df_val[X_columns].values)
    df_val['Prediction'] = predictions

    ####
    import matplotlib.pyplot as plt
    plt.rcParams["font.family"] = "Times New Roman" # !!!!
    plt.rcParams.update({'font.size': 24})
    plt.rcParams.update({'axes.labelpad': 20})

    from matplotlib import cm
    from matplotlib.ticker import LinearLocator

    fig, ax = plt.subplots(figsize=(12, 12), layout='compressed', subplot_kw={"projection": "3d"})

    stride = 0.025
    X = np.arange(0, 1+stride, stride)
    Y = np.arange(0, 1+stride, stride)

    X, Y = np.meshgrid(X, Y)
    Z = []
    for (x,y) in zip(X.reshape(-1), Y.reshape(-1)):
        if (x+y)>1:
            Z.append(np.inf)
        else:
            Z.append(
                reg.predict(np.asarray([x, y, 1-x-y]).reshape(1, -1)
                                        )[0])
    Z = np.asarray(Z).reshape(len(np.arange(0, 1+stride, stride)), len(np.arange(0, 1+stride, stride)))

    # Plot the surface.
    surf = ax.plot_surface(X, Y, Z, 
                        edgecolor='white', 
                        lw=0.5, rstride=2, cstride=2,
                    alpha=0.85,
                        cmap='coolwarm', 
                        vmin=min(Z[Z!=np.inf]),
                        vmax=max(Z[Z!=np.inf]),
                        # linewidth=8, 
                        antialiased=False, )

    ax.zaxis.set_major_locator(LinearLocator(10))
    ax.zaxis.set_major_formatter('{x:.02f}')

    ax.view_init(elev=25, azim=45, roll=0) #####

    ax.contourf(X, Y, Z, zdir='z', 
                    offset=np.min(Z)-0.35, 
                    cmap=cm.coolwarm)
    
    from matplotlib.patches import Circle
    from mpl_toolkits.mplot3d import art3d

    def add_point(ax, x, y, z, fc = None, ec = None, radius = 0.005):
        xy_len, z_len = ax.get_figure().get_size_inches()
        axis_length = [x[1] - x[0] for x in [ax.get_xbound(), ax.get_ybound(), ax.get_zbound()]]
        axis_rotation =  {'z': ((x, y, z), axis_length[1]/axis_length[0]),
                            'y': ((x, z, y), axis_length[2]/axis_length[0]*xy_len/z_len),
                            'x': ((y, z, x), axis_length[2]/axis_length[1]*xy_len/z_len)}
        for a, ((x0, y0, z0), ratio) in axis_rotation.items():
            p = Circle((x0, y0), radius, lw=1.5,
                        # width = radius, height = radius*ratio, 
                        fc=fc,
                        ec=ec)
            ax.add_patch(p)
            art3d.pathpatch_2d_to_3d(p, z=z0, zdir=a)

    
    add_point(ax, X.reshape(-1)[np.argmin(Z)], Y.reshape(-1)[np.argmin(Z)], np.min(Z), 
            fc='Red', 
            ec='Red', radius=0.015)

    add_point(ax, X.reshape(-1)[np.argmin(Z)], Y.reshape(-1)[np.argmin(Z)], np.min(Z)-0.35, 
            fc='Red', 
            ec='Red', radius=0.015)


    ax.set_xlabel('Github (%)', fontdict={
        'size':24
    })
    ax.set_ylabel('Hacker News (%)', fontdict={
        'size':24
    })

    ax.set_xticks(np.arange(0, 1, 0.2), [str(np.round(num, 1)) for num in np.arange(0, 100, 20)], )
    ax.set_yticks(np.arange(0, 1, 0.2), [str(np.round(num, 1)) for num in np.arange(0, 100, 20)], )

    ax.set_zticks(np.arange(np.min(Z), np.max(Z[Z!=np.inf]), 0.2), [str(np.round(num, 1)) for num in np.arange(np.min(Z), np.max(Z[Z!=np.inf]), 0.2)], )

    ax.zaxis.labelpad=1

    ax.set_zlim(np.min(Z)-0.35, max(Z[Z!=np.inf])+0.01)
    ax.set_xlim(0, 1)
    ax.set_ylim(0, 1)
    ax.set_box_aspect(aspect=None, zoom=0.775)

    ax.zaxis._axinfo['juggled'] = (1,2,2)

    # Add a color bar which maps values to colors.
    cbar = fig.colorbar(surf, 
                shrink=0.5, 
                aspect=25, pad=0.01
                )
    cbar.ax.set_ylabel('Prediction', fontdict={
        'size':32
    }, 
                    # rotation=270, 
                    # labelpad=-90
                    )


    filename = "tmp.png"
    plt.savefig(filename, bbox_inches='tight', pad_inches=0.1)
    ####
    return [gr.ScatterPlot(
            value=df_val,
            x="Prediction",
            y="Target",
            title="Scatter",
            tooltip=["Prediction", "Target"],
            x_lim=[min(min(predictions), min(df_val[y_column]))-0.25, max(max(predictions), max(df_val[y_column]))+0.25],
            y_lim=[min(min(predictions), min(df_val[y_column]))-0.25, max(max(predictions), max(df_val[y_column]))+0.25]
        ), 
        gr.Image(Image.open('tmp.png')),
        df_val[['Target', 'Prediction']], ]

def upload_csv(file):
    df = pd.read_csv(file.name, 
                    #  encoding='utf-8'
                     )
    # Return as formatted string
    # print(df.head())
    return df

df = pd.read_csv('data.csv')
headers = df.columns.tolist()

inputs = [gr.Dataframe(headers=headers, row_count = (8, "dynamic"), datatype='number', col_count=(4,"fixed"), label="Dataset", interactive=1)]
outputs = [gr.ScatterPlot(), gr.Image(), gr.Dataframe(row_count = (2, "dynamic"), col_count=(2, "fixed"), datatype='number', label="Results", headers=["Target", "Prediction"])]

with gr.Blocks() as demo:

    ####
    upload_button = gr.UploadButton(label="Upload", file_types = ['.csv'], 
                                    # live=True, 
                                    file_count = "single", render=False)    
    upload_button.upload(fn=upload_csv, inputs=upload_button, outputs=inputs, api_name="upload_csv")
    ####

    gr.Interface(infer, inputs=inputs, outputs=outputs, title=title,
                additional_inputs = [upload_button], 
                additional_inputs_accordion='Upload CSV',
                description = description, 
                examples=[[df], []], 
                cache_examples=False, allow_flagging='never')
    

demo.launch(debug=False)