Spaces:
Runtime error
Runtime error
| import json | |
| import cv2 | |
| import numpy as np | |
| import os | |
| from torch.utils.data import Dataset | |
| from PIL import Image | |
| import cv2 | |
| from .data_utils import * | |
| from .base import BaseDataset | |
| from pycocotools import mask as mask_utils | |
| from lvis import LVIS | |
| class LvisDataset(BaseDataset): | |
| def __init__(self, image_dir, json_path): | |
| self.image_dir = image_dir | |
| self.json_path = json_path | |
| lvis_api = LVIS(json_path) | |
| img_ids = sorted(lvis_api.imgs.keys()) | |
| imgs = lvis_api.load_imgs(img_ids) | |
| anns = [lvis_api.img_ann_map[img_id] for img_id in img_ids] | |
| self.data = imgs | |
| self.annos = anns | |
| self.lvis_api = lvis_api | |
| self.size = (512,512) | |
| self.clip_size = (224,224) | |
| self.dynamic = 0 | |
| def register_subset(self, path): | |
| data = os.listdir(path) | |
| data = [ os.path.join(path, i) for i in data if '.json' in i] | |
| self.data = self.data + data | |
| def get_sample(self, idx): | |
| # ==== get pairs ===== | |
| image_name = self.data[idx]['coco_url'].split('/')[-1] | |
| image_path = os.path.join(self.image_dir, image_name) | |
| image = cv2.imread(image_path) | |
| ref_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| anno = self.annos[idx] | |
| obj_ids = [] | |
| for i in range(len(anno)): | |
| obj = anno[i] | |
| area = obj['area'] | |
| if area > 3600: | |
| obj_ids.append(i) | |
| assert len(anno) > 0 | |
| obj_id = np.random.choice(obj_ids) | |
| anno = anno[obj_id] | |
| ref_mask = self.lvis_api.ann_to_mask(anno) | |
| tar_image, tar_mask = ref_image.copy(), ref_mask.copy() | |
| item_with_collage = self.process_pairs(ref_image, ref_mask, tar_image, tar_mask) | |
| sampled_time_steps = self.sample_timestep() | |
| item_with_collage['time_steps'] = sampled_time_steps | |
| return item_with_collage | |
| def __len__(self): | |
| return 20000 | |
| def check_region_size(self, image, yyxx, ratio, mode = 'max'): | |
| pass_flag = True | |
| H,W = image.shape[0], image.shape[1] | |
| H,W = H * ratio, W * ratio | |
| y1,y2,x1,x2 = yyxx | |
| h,w = y2-y1,x2-x1 | |
| if mode == 'max': | |
| if h > H or w > W: | |
| pass_flag = False | |
| elif mode == 'min': | |
| if h < H or w < W: | |
| pass_flag = False | |
| return pass_flag | |