File size: 5,305 Bytes
af836e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3f5ff0
ff704b5
 
 
d0ae17f
c870bf1
6f1334b
ff704b5
908288f
 
9354354
1eb7c2f
af836e4
 
 
 
 
 
 
9354354
af836e4
 
9354354
af836e4
 
 
 
 
 
9354354
 
 
908288f
 
e3f5ff0
a3044d1
e3f5ff0
ff704b5
 
e3f5ff0
 
908288f
 
af836e4
e3f5ff0
908288f
e3f5ff0
 
 
 
 
af836e4
e3f5ff0
af836e4
c870bf1
 
 
d0ae17f
fce7c66
 
 
d0ae17f
fce7c66
af836e4
fce7c66
 
d0ae17f
fce7c66
e3f5ff0
d0ae17f
af836e4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# from fastapi import FastAPI, Response
# from fastapi.responses import FileResponse
# from kokoro import KPipeline
# import soundfile as sf
# import os
# import numpy as np
# import torch 
# from huggingface_hub import InferenceClient

# def llm_chat_response(text):
#     HF_TOKEN = os.getenv("HF_TOKEN")
#     client = InferenceClient(
#     provider="hf-inference",
#     api_key=HF_TOKEN,)

#     response_from_llama = client.chat.completions.create(
#         model="meta-llama/Llama-3.2-11B-Vision-Instruct",
#         messages=[
#             {
#                 "role": "user",
#                 "content": [
#                     {
#                         "type": "text",
#                         "text": "Describe this image in one sentence."
#                     }#,
#                     # {
#                     #     "type": "image_url",
#                     #     "image_url": {
#                     #         "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
#                     #     }
#                     # }
#                 ]
#             }
#         ],
#         max_tokens=500,
#     )
   
    

#     return response_from_llama.choices[0].message['content']

# app = FastAPI()

# # Initialize pipeline once at startup
# pipeline = KPipeline(lang_code='a')

# @app.post("/generate")
# async def generate_audio(text: str, voice: str = "af_heart", speed: float = 1.0):
    
#     text_reply = llm_chat_response(text)
    
#     # Generate audio
#     generator = pipeline(
#         text_reply, 
#         voice=voice,
#         speed=speed,
#         split_pattern=r'\n+'
#     )
    
#     # # Save first segment only for demo
#     # for i, (gs, ps, audio) in enumerate(generator):
#     #     sf.write(f"output_{i}.wav", audio, 24000)
#     #     return FileResponse(
#     #         f"output_{i}.wav",
#     #         media_type="audio/wav",
#     #         filename="output.wav"
#     #     )
    
#     # return Response("No audio generated", status_code=400)


#     # Process only the first segment for demo
#     for i, (gs, ps, audio) in enumerate(generator):

#         # Convert PyTorch tensor to NumPy array
#         audio_numpy = audio.cpu().numpy()
#         # Convert to 16-bit PCM
        
#         # Ensure the audio is in the range [-1, 1]
#         audio_numpy = np.clip(audio_numpy, -1, 1)
#         # Convert to 16-bit signed integers
#         pcm_data = (audio_numpy * 32767).astype(np.int16)
        
#         # Convert to bytes (automatically uses row-major order)
#         raw_audio = pcm_data.tobytes()
        
#         # Return PCM data with minimal necessary headers
#         return Response(
#             content=raw_audio,
#             media_type="application/octet-stream",
#             headers={
#                 "Content-Disposition": f'attachment; filename="output.pcm"',
#                 "X-Sample-Rate": "24000",
#                 "X-Bits-Per-Sample": "16",
#                 "X-Endianness": "little"
#             }
#         )
    
#     return Response("No audio generated", status_code=400)



from fastapi import FastAPI, Response
from fastapi.responses import FileResponse
from kokoro import KPipeline
import os
import numpy as np
import torch 
from huggingface_hub import InferenceClient

def llm_chat_response(text):
    HF_TOKEN = os.getenv("HF_TOKEN")
    client = InferenceClient(
        provider="novita",  # Use the provider that supports conversational image-text tasks.
        api_key=HF_TOKEN,
    )
    
    # Build the message payload; here we append a prompt suffix when no image is involved.
    messages = [{
        "role": "user",
        "content": [
            {
                "type": "text",
                "text": text + " describe in one line only"
            }
        ]
    }]
    
    response_from_llama = client.chat.completions.create(
        model="meta-llama/Llama-3.2-11B-Vision-Instruct",
        messages=messages,
        max_tokens=500,
    )
   
    return response_from_llama.choices[0].message['content']

app = FastAPI()

# Initialize pipeline once at startup
pipeline = KPipeline(lang_code='a')

@app.post("/generate")
async def generate_audio(text: str, voice: str = "af_heart", speed: float = 1.0):
    text_reply = llm_chat_response(text)
    
    # Generate audio using the pipeline
    generator = pipeline(
        text_reply, 
        voice=voice,
        speed=speed,
        split_pattern=r'\n+'
    )
    
    # Process only the first segment for demonstration
    for i, (gs, ps, audio) in enumerate(generator):
        # Convert PyTorch tensor to NumPy array and prepare 16-bit PCM data
        audio_numpy = audio.cpu().numpy()
        audio_numpy = np.clip(audio_numpy, -1, 1)
        pcm_data = (audio_numpy * 32767).astype(np.int16)
        raw_audio = pcm_data.tobytes()
        
        return Response(
            content=raw_audio,
            media_type="application/octet-stream",
            headers={
                "Content-Disposition": 'attachment; filename="output.pcm"',
                "X-Sample-Rate": "24000",
                "X-Bits-Per-Sample": "16",
                "X-Endianness": "little"
            }
        )
    
    return Response("No audio generated", status_code=400)