Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,31 +1,23 @@
|
|
1 |
import os
|
2 |
-
import gc
|
3 |
-
import random
|
4 |
-
import itertools
|
5 |
import warnings
|
6 |
import logging
|
7 |
-
|
8 |
-
logging.disable(logging.WARNING)
|
9 |
import numpy as np
|
|
|
|
|
|
|
10 |
import pandas as pd
|
11 |
-
from tqdm.auto import tqdm
|
12 |
-
import tokenizers
|
13 |
-
import transformers
|
14 |
-
from transformers import AutoTokenizer, AutoConfig, AutoModel, T5EncoderModel, get_linear_schedule_with_warmup, AutoModelForSeq2SeqLM, T5ForConditionalGeneration
|
15 |
-
import datasets
|
16 |
-
from datasets import load_dataset, load_metric
|
17 |
-
import argparse
|
18 |
import torch
|
19 |
-
import sentencepiece
|
20 |
from torch.utils.data import Dataset, DataLoader
|
21 |
-
|
22 |
-
import torch.nn as nn
|
23 |
-
import pickle
|
24 |
-
import time
|
25 |
-
from sklearn.preprocessing import MinMaxScaler
|
26 |
from datasets.utils.logging import disable_progress_bar
|
27 |
-
|
|
|
|
|
|
|
28 |
disable_progress_bar()
|
|
|
|
|
29 |
import streamlit as st
|
30 |
|
31 |
st.title('predictyield-t5')
|
@@ -52,161 +44,191 @@ class CFG():
|
|
52 |
fc_dropout = 0.1
|
53 |
seed = 42
|
54 |
num_workers=1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
if st.button('predict'):
|
57 |
with st.spinner('Now processing. This process takes about 4 seconds per reaction.'):
|
58 |
|
59 |
|
60 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
61 |
|
62 |
-
|
63 |
-
def seed_everything(seed=42):
|
64 |
-
random.seed(seed)
|
65 |
-
os.environ['PYTHONHASHSEED'] = str(seed)
|
66 |
-
np.random.seed(seed)
|
67 |
-
torch.manual_seed(seed)
|
68 |
-
torch.cuda.manual_seed(seed)
|
69 |
-
torch.backends.cudnn.deterministic = True
|
70 |
seed_everything(seed=CFG.seed)
|
71 |
|
72 |
CFG.tokenizer = AutoTokenizer.from_pretrained(CFG.model_name_or_path, return_tensors='pt')
|
73 |
|
74 |
-
def prepare_input(cfg, text):
|
75 |
-
inputs = cfg.tokenizer(text, add_special_tokens=True, max_length=CFG.max_len, padding='max_length', return_offsets_mapping=False, truncation=True, return_attention_mask=True)
|
76 |
-
for k, v in inputs.items():
|
77 |
-
inputs[k] = torch.tensor(v, dtype=torch.long)
|
78 |
-
|
79 |
-
return inputs
|
80 |
-
|
81 |
-
class TestDataset(Dataset):
|
82 |
-
def __init__(self, cfg, df):
|
83 |
-
self.cfg = cfg
|
84 |
-
self.inputs = df['input'].values
|
85 |
-
|
86 |
-
def __len__(self):
|
87 |
-
return len(self.inputs)
|
88 |
-
|
89 |
-
def __getitem__(self, item):
|
90 |
-
inputs = prepare_input(self.cfg, self.inputs[item])
|
91 |
-
|
92 |
-
return inputs
|
93 |
-
|
94 |
-
|
95 |
-
class RegressionModel(nn.Module):
|
96 |
-
def __init__(self, cfg, config_path=None, pretrained=False):
|
97 |
-
super().__init__()
|
98 |
-
self.cfg = cfg
|
99 |
-
if config_path is None:
|
100 |
-
self.config = AutoConfig.from_pretrained(cfg.pretrained_model_name_or_path, output_hidden_states=True)
|
101 |
-
else:
|
102 |
-
self.config = torch.load(config_path)
|
103 |
-
if pretrained:
|
104 |
-
if 't5' in cfg.model:
|
105 |
-
self.model = T5ForConditionalGeneration.from_pretrained(CFG.pretrained_model_name_or_path)
|
106 |
-
else:
|
107 |
-
self.model = AutoModel.from_pretrained(CFG.pretrained_model_name_or_path)
|
108 |
-
else:
|
109 |
-
if 't5' in cfg.model:
|
110 |
-
self.model = T5ForConditionalGeneration.from_pretrained('sagawa/ZINC-t5')
|
111 |
-
else:
|
112 |
-
self.model = AutoModel.from_config(self.config)
|
113 |
-
self.model.resize_token_embeddings(len(cfg.tokenizer))
|
114 |
-
self.fc_dropout1 = nn.Dropout(cfg.fc_dropout)
|
115 |
-
self.fc1 = nn.Linear(self.config.hidden_size, self.config.hidden_size//2)
|
116 |
-
self.fc_dropout2 = nn.Dropout(cfg.fc_dropout)
|
117 |
-
|
118 |
-
self.fc2 = nn.Linear(self.config.hidden_size, self.config.hidden_size//2)
|
119 |
-
self.fc3 = nn.Linear(self.config.hidden_size//2*2, self.config.hidden_size)
|
120 |
-
self.fc4 = nn.Linear(self.config.hidden_size, self.config.hidden_size)
|
121 |
-
self.fc5 = nn.Linear(self.config.hidden_size, 1)
|
122 |
-
|
123 |
-
self._init_weights(self.fc1)
|
124 |
-
self._init_weights(self.fc2)
|
125 |
-
self._init_weights(self.fc3)
|
126 |
-
self._init_weights(self.fc4)
|
127 |
-
|
128 |
-
def _init_weights(self, module):
|
129 |
-
if isinstance(module, nn.Linear):
|
130 |
-
module.weight.data.normal_(mean=0.0, std=0.01)
|
131 |
-
if module.bias is not None:
|
132 |
-
module.bias.data.zero_()
|
133 |
-
elif isinstance(module, nn.Embedding):
|
134 |
-
module.weight.data.normal_(mean=0.0, std=0.01)
|
135 |
-
if module.padding_idx is not None:
|
136 |
-
module.weight.data[module.padding_idx].zero_()
|
137 |
-
elif isinstance(module, nn.LayerNorm):
|
138 |
-
module.bias.data.zero_()
|
139 |
-
module.weight.data.fill_(1.0)
|
140 |
-
|
141 |
-
def forward(self, inputs):
|
142 |
-
encoder_outputs = self.model.encoder(**inputs)
|
143 |
-
encoder_hidden_states = encoder_outputs[0]
|
144 |
-
outputs = self.model.decoder(input_ids=torch.full((inputs['input_ids'].size(0),1),
|
145 |
-
self.config.decoder_start_token_id,
|
146 |
-
dtype=torch.long,
|
147 |
-
device=device), encoder_hidden_states=encoder_hidden_states)
|
148 |
-
last_hidden_states = outputs[0]
|
149 |
-
output1 = self.fc1(self.fc_dropout1(last_hidden_states).view(-1, self.config.hidden_size))
|
150 |
-
output2 = self.fc2(encoder_hidden_states[:, 0, :].view(-1, self.config.hidden_size))
|
151 |
-
output = self.fc3(self.fc_dropout2(torch.hstack((output1, output2))))
|
152 |
-
output = self.fc4(output)
|
153 |
-
output = self.fc5(output)
|
154 |
-
return output
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
def inference_fn(test_loader, model, device):
|
159 |
-
preds = []
|
160 |
-
model.eval()
|
161 |
-
model.to(device)
|
162 |
-
tk0 = enumerate(test_loader)
|
163 |
-
for i, inputs in tk0:
|
164 |
-
for k, v in inputs.items():
|
165 |
-
inputs[k] = v.to(device)
|
166 |
-
with torch.no_grad():
|
167 |
-
y_preds = model(inputs)
|
168 |
-
preds.append(y_preds.to('cpu').numpy())
|
169 |
-
predictions = np.concatenate(preds)
|
170 |
-
return predictions
|
171 |
-
|
172 |
-
model = RegressionModel(CFG, config_path=CFG.model_name_or_path + '/config.pth', pretrained=False)
|
173 |
-
state = torch.load(CFG.model_name_or_path + '/ZINC-t5_best.pth', map_location=torch.device('cpu'))
|
174 |
-
model.load_state_dict(state)
|
175 |
-
|
176 |
|
|
|
|
|
177 |
if CFG.uploaded_file is not None:
|
178 |
-
test_ds = pd.read_csv(CFG.
|
179 |
-
|
180 |
-
|
181 |
-
test_loader = DataLoader(test_dataset,
|
182 |
-
batch_size=CFG.batch_size,
|
183 |
-
shuffle=False,
|
184 |
-
num_workers=CFG.num_workers, pin_memory=True, drop_last=False)
|
185 |
-
|
186 |
-
|
187 |
-
prediction = inference_fn(test_loader, model, device)
|
188 |
-
|
189 |
-
test_ds['prediction'] = prediction*100
|
190 |
-
test_ds['prediction'] = test_ds['prediction'].clip(0, 100)
|
191 |
-
csv = test_ds.to_csv(index=False)
|
192 |
-
st.download_button(
|
193 |
-
label="Download data as CSV",
|
194 |
-
data=csv,
|
195 |
-
file_name='output.csv',
|
196 |
-
mime='text/csv'
|
197 |
-
)
|
198 |
-
|
199 |
else:
|
200 |
-
CFG.
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
|
|
|
|
|
|
2 |
import warnings
|
3 |
import logging
|
4 |
+
import random
|
|
|
5 |
import numpy as np
|
6 |
+
import torch.nn as nn
|
7 |
+
from transformers import AutoConfig, PreTrainedModel, T5ForConditionalGeneration
|
8 |
+
|
9 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
import torch
|
|
|
11 |
from torch.utils.data import Dataset, DataLoader
|
12 |
+
from transformers import AutoTokenizer
|
|
|
|
|
|
|
|
|
13 |
from datasets.utils.logging import disable_progress_bar
|
14 |
+
|
15 |
+
# Suppress warnings and logging
|
16 |
+
warnings.filterwarnings("ignore")
|
17 |
+
logging.disable(logging.WARNING)
|
18 |
disable_progress_bar()
|
19 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
20 |
+
|
21 |
import streamlit as st
|
22 |
|
23 |
st.title('predictyield-t5')
|
|
|
44 |
fc_dropout = 0.1
|
45 |
seed = 42
|
46 |
num_workers=1
|
47 |
+
|
48 |
+
|
49 |
+
def seed_everything(seed=42):
|
50 |
+
random.seed(seed)
|
51 |
+
os.environ['PYTHONHASHSEED'] = str(seed)
|
52 |
+
np.random.seed(seed)
|
53 |
+
torch.manual_seed(seed)
|
54 |
+
torch.cuda.manual_seed(seed)
|
55 |
+
torch.backends.cudnn.deterministic = True
|
56 |
+
|
57 |
+
|
58 |
+
def prepare_input(cfg, text):
|
59 |
+
"""
|
60 |
+
Prepare input tensors for the model.
|
61 |
+
|
62 |
+
Args:
|
63 |
+
cfg (argparse.Namespace): Configuration object.
|
64 |
+
text (str): Input text.
|
65 |
+
|
66 |
+
Returns:
|
67 |
+
dict: Tokenized input tensors.
|
68 |
+
"""
|
69 |
+
inputs = cfg.tokenizer(
|
70 |
+
text,
|
71 |
+
add_special_tokens=True,
|
72 |
+
max_length=cfg.max_len,
|
73 |
+
padding="max_length",
|
74 |
+
truncation=True,
|
75 |
+
return_attention_mask=True,
|
76 |
+
)
|
77 |
+
return {k: torch.tensor(v, dtype=torch.long) for k, v in inputs.items()}
|
78 |
+
|
79 |
+
|
80 |
+
def inference_fn(test_loader, model, cfg):
|
81 |
+
"""
|
82 |
+
Inference function.
|
83 |
+
|
84 |
+
Args:
|
85 |
+
test_loader (DataLoader): DataLoader for test data.
|
86 |
+
model (nn.Module): Model for inference.
|
87 |
+
cfg (argparse.Namespace): Configuration object.
|
88 |
+
|
89 |
+
Returns:
|
90 |
+
np.ndarray: Predictions.
|
91 |
+
"""
|
92 |
+
model.eval()
|
93 |
+
model.to(cfg.device)
|
94 |
+
preds = []
|
95 |
+
|
96 |
+
for inputs in test_loader:
|
97 |
+
inputs = {k: v.to(cfg.device) for k, v in inputs.items()}
|
98 |
+
with torch.no_grad():
|
99 |
+
y_preds = model(inputs)
|
100 |
+
preds.append(y_preds.to("cpu").numpy())
|
101 |
+
|
102 |
+
return np.concatenate(preds)
|
103 |
+
|
104 |
+
def preprocess(df):
|
105 |
+
"""
|
106 |
+
Preprocess the input DataFrame for training.
|
107 |
+
|
108 |
+
Args:
|
109 |
+
df (pd.DataFrame): Input DataFrame.
|
110 |
+
cfg (argparse.Namespace): Configuration object.
|
111 |
+
|
112 |
+
Returns:
|
113 |
+
pd.DataFrame: Preprocessed DataFrame.
|
114 |
+
"""
|
115 |
+
df["input"] = (
|
116 |
+
"REACTANT:"
|
117 |
+
+ df["REACTANT"]
|
118 |
+
+ "REAGENT:"
|
119 |
+
+ df["REAGENT"]
|
120 |
+
+ "PRODUCT:"
|
121 |
+
+ df["PRODUCT"]
|
122 |
+
)
|
123 |
+
|
124 |
+
return df
|
125 |
+
|
126 |
+
|
127 |
+
class TestDataset(Dataset):
|
128 |
+
"""
|
129 |
+
Dataset class for training.
|
130 |
+
"""
|
131 |
+
|
132 |
+
def __init__(self, cfg, df):
|
133 |
+
self.cfg = cfg
|
134 |
+
self.inputs = df["input"].values
|
135 |
+
|
136 |
+
def __len__(self):
|
137 |
+
return len(self.inputs)
|
138 |
+
|
139 |
+
def __getitem__(self, item):
|
140 |
+
inputs = prepare_input(self.cfg, self.inputs[item])
|
141 |
+
|
142 |
+
return inputs
|
143 |
+
|
144 |
+
|
145 |
+
class ReactionT5Yield(PreTrainedModel):
|
146 |
+
config_class = AutoConfig
|
147 |
+
def __init__(self, config):
|
148 |
+
super().__init__(config)
|
149 |
+
self.config = config
|
150 |
+
self.model = T5ForConditionalGeneration.from_pretrained(self.config._name_or_path)
|
151 |
+
self.model.resize_token_embeddings(self.config.vocab_size)
|
152 |
+
self.fc1 = nn.Linear(self.config.hidden_size, self.config.hidden_size//2)
|
153 |
+
self.fc2 = nn.Linear(self.config.hidden_size, self.config.hidden_size//2)
|
154 |
+
self.fc3 = nn.Linear(self.config.hidden_size//2*2, self.config.hidden_size)
|
155 |
+
self.fc4 = nn.Linear(self.config.hidden_size, self.config.hidden_size)
|
156 |
+
self.fc5 = nn.Linear(self.config.hidden_size, 1)
|
157 |
+
|
158 |
+
self._init_weights(self.fc1)
|
159 |
+
self._init_weights(self.fc2)
|
160 |
+
self._init_weights(self.fc3)
|
161 |
+
self._init_weights(self.fc4)
|
162 |
+
self._init_weights(self.fc5)
|
163 |
+
|
164 |
+
def _init_weights(self, module):
|
165 |
+
if isinstance(module, nn.Linear):
|
166 |
+
module.weight.data.normal_(mean=0.0, std=0.01)
|
167 |
+
if module.bias is not None:
|
168 |
+
module.bias.data.zero_()
|
169 |
+
elif isinstance(module, nn.Embedding):
|
170 |
+
module.weight.data.normal_(mean=0.0, std=0.01)
|
171 |
+
if module.padding_idx is not None:
|
172 |
+
module.weight.data[module.padding_idx].zero_()
|
173 |
+
elif isinstance(module, nn.LayerNorm):
|
174 |
+
module.bias.data.zero_()
|
175 |
+
module.weight.data.fill_(1.0)
|
176 |
+
|
177 |
+
def forward(self, inputs):
|
178 |
+
encoder_outputs = self.model.encoder(**inputs)
|
179 |
+
encoder_hidden_states = encoder_outputs[0]
|
180 |
+
outputs = self.model.decoder(input_ids=torch.full((inputs['input_ids'].size(0),1),
|
181 |
+
self.config.decoder_start_token_id,
|
182 |
+
dtype=torch.long), encoder_hidden_states=encoder_hidden_states)
|
183 |
+
last_hidden_states = outputs[0]
|
184 |
+
output1 = self.fc1(last_hidden_states.view(-1, self.config.hidden_size))
|
185 |
+
output2 = self.fc2(encoder_hidden_states[:, 0, :].view(-1, self.config.hidden_size))
|
186 |
+
output = self.fc3(torch.hstack((output1, output2)))
|
187 |
+
output = self.fc4(output)
|
188 |
+
output = self.fc5(output)
|
189 |
+
return output*100
|
190 |
+
|
191 |
|
192 |
if st.button('predict'):
|
193 |
with st.spinner('Now processing. This process takes about 4 seconds per reaction.'):
|
194 |
|
195 |
|
196 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
197 |
+
CFG.device = device
|
198 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
seed_everything(seed=CFG.seed)
|
200 |
|
201 |
CFG.tokenizer = AutoTokenizer.from_pretrained(CFG.model_name_or_path, return_tensors='pt')
|
202 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
+
model = ReactionT5Yield.from_pretrained(CFG.model_name_or_path)
|
205 |
+
|
206 |
if CFG.uploaded_file is not None:
|
207 |
+
test_ds = pd.read_csv(CFG.data)
|
208 |
+
if "input" not in test_ds.columns:
|
209 |
+
test_ds = preprocess(test_ds, CFG)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
else:
|
211 |
+
test_ds = pd.DataFrame.from_dict({"input": [CFG.data]}, orient="index").T
|
212 |
+
|
213 |
+
test_dataset = TestDataset(CFG, test_ds)
|
214 |
+
test_loader = DataLoader(
|
215 |
+
test_dataset,
|
216 |
+
batch_size=CFG.batch_size,
|
217 |
+
shuffle=False,
|
218 |
+
num_workers=CFG.num_workers,
|
219 |
+
pin_memory=True,
|
220 |
+
drop_last=False,
|
221 |
+
)
|
222 |
+
|
223 |
+
|
224 |
+
prediction = inference_fn(test_loader, model, CFG)
|
225 |
+
|
226 |
+
test_ds["prediction"] = prediction
|
227 |
+
test_ds["prediction"] = test_ds["prediction"].clip(0, 100)
|
228 |
+
csv = test_ds.to_csv(index=False)
|
229 |
+
st.download_button(
|
230 |
+
label="Download data as CSV",
|
231 |
+
data=csv,
|
232 |
+
file_name='output.csv',
|
233 |
+
mime='text/csv'
|
234 |
+
)
|