sagawa commited on
Commit
95d001b
·
1 Parent(s): f6bf49d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -3
app.py CHANGED
@@ -22,7 +22,7 @@ class CFG():
22
  num_return_sequences = 5
23
  seed = 42
24
 
25
-
26
 
27
  device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
28
 
@@ -35,13 +35,15 @@ def seed_everything(seed=42):
35
  torch.backends.cudnn.deterministic = True
36
  seed_everything(seed=CFG.seed)
37
 
 
 
38
  tokenizer = AutoTokenizer.from_pretrained(CFG.model_name_or_path, return_tensors='pt')
39
 
40
  if CFG.model == 't5':
41
  model = AutoModelForSeq2SeqLM.from_pretrained(CFG.model_name_or_path).to(device)
42
  elif CFG.model == 'deberta':
43
  model = EncoderDecoderModel.from_pretrained(CFG.model_name_or_path).to(device)
44
-
45
  input_compound = CFG.input_data
46
  min_length = min(input_compound.find('CATALYST') - input_compound.find(':') - 10, 0)
47
  inp = tokenizer(input_compound, return_tensors='pt').to(device)
@@ -60,4 +62,5 @@ if type(mol) == None:
60
  output += scores
61
  output = [input_compound] + output
62
  output_df = pd.DataFrame(np.array(output).reshape(1, -1), columns=['input'] + [f'{i}th' for i in range(CFG.num_beams)] + ['valid compound'] + [f'{i}th score' for i in range(CFG.num_beams)] + ['valid compound score'])
63
- print(output)
 
 
22
  num_return_sequences = 5
23
  seed = 42
24
 
25
+ print('ok')
26
 
27
  device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
28
 
 
35
  torch.backends.cudnn.deterministic = True
36
  seed_everything(seed=CFG.seed)
37
 
38
+ print('ok')
39
+ print(CFG.input_data)
40
  tokenizer = AutoTokenizer.from_pretrained(CFG.model_name_or_path, return_tensors='pt')
41
 
42
  if CFG.model == 't5':
43
  model = AutoModelForSeq2SeqLM.from_pretrained(CFG.model_name_or_path).to(device)
44
  elif CFG.model == 'deberta':
45
  model = EncoderDecoderModel.from_pretrained(CFG.model_name_or_path).to(device)
46
+ print('ok')
47
  input_compound = CFG.input_data
48
  min_length = min(input_compound.find('CATALYST') - input_compound.find(':') - 10, 0)
49
  inp = tokenizer(input_compound, return_tensors='pt').to(device)
 
62
  output += scores
63
  output = [input_compound] + output
64
  output_df = pd.DataFrame(np.array(output).reshape(1, -1), columns=['input'] + [f'{i}th' for i in range(CFG.num_beams)] + ['valid compound'] + [f'{i}th score' for i in range(CFG.num_beams)] + ['valid compound score'])
65
+ print(output)
66
+ print('ok')