Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -10,10 +10,10 @@ import numpy
|
|
10 |
logging.basicConfig(level=logging.INFO)
|
11 |
|
12 |
class LLaVAPhiModel:
|
13 |
-
def __init__(self, model_id="
|
14 |
self.device = "cuda"
|
15 |
self.model_id = model_id
|
16 |
-
logging.info(
|
17 |
|
18 |
# Initialize tokenizer
|
19 |
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
|
@@ -21,37 +21,28 @@ class LLaVAPhiModel:
|
|
21 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
22 |
|
23 |
try:
|
24 |
-
# Use CLIPProcessor
|
25 |
self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
26 |
logging.info("Successfully loaded CLIP processor")
|
27 |
except Exception as e:
|
28 |
logging.error(f"Failed to load CLIP processor: {str(e)}")
|
29 |
self.processor = None
|
30 |
|
31 |
-
# Increase history length to retain more context
|
32 |
self.history = []
|
33 |
self.model = None
|
34 |
self.clip = None
|
35 |
-
|
36 |
-
# Default generation parameters - can be updated from config
|
37 |
-
self.temperature = 0.3
|
38 |
-
self.top_p = 0.92
|
39 |
-
self.top_k = 50
|
40 |
-
self.repetition_penalty = 1.2
|
41 |
-
|
42 |
-
# Set max length from config
|
43 |
-
self.max_length = 512 # Default value, will be updated from config
|
44 |
|
45 |
@spaces.GPU
|
46 |
def ensure_models_loaded(self):
|
47 |
"""Ensure models are loaded in GPU context"""
|
48 |
if self.model is None:
|
49 |
-
#
|
50 |
from transformers import BitsAndBytesConfig
|
51 |
quantization_config = BitsAndBytesConfig(
|
52 |
-
load_in_4bit=True,
|
53 |
-
bnb_4bit_compute_dtype=torch.
|
54 |
-
bnb_4bit_use_double_quant=
|
|
|
55 |
)
|
56 |
|
57 |
try:
|
@@ -63,156 +54,132 @@ class LLaVAPhiModel:
|
|
63 |
trust_remote_code=True
|
64 |
)
|
65 |
self.model.config.pad_token_id = self.tokenizer.eos_token_id
|
66 |
-
logging.info(
|
67 |
except Exception as e:
|
68 |
logging.error(f"Failed to load main model: {str(e)}")
|
69 |
raise
|
70 |
|
71 |
if self.clip is None:
|
72 |
try:
|
73 |
-
#
|
74 |
-
|
75 |
-
|
76 |
-
logging.info(f"Successfully loaded CLIP model: {clip_model_name}")
|
77 |
except Exception as e:
|
78 |
logging.error(f"Failed to load CLIP model: {str(e)}")
|
79 |
self.clip = None
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
lora_config = LoraConfig(
|
86 |
-
r=lora_params.get("r", 16),
|
87 |
-
lora_alpha=lora_params.get("lora_alpha", 32),
|
88 |
-
lora_dropout=lora_params.get("lora_dropout", 0.05),
|
89 |
-
target_modules=lora_params.get("target_modules", ["Wqkv", "out_proj"]),
|
90 |
-
bias="none",
|
91 |
-
task_type="CAUSAL_LM"
|
92 |
-
)
|
93 |
-
|
94 |
-
# Convert model to PEFT/LoRA model
|
95 |
-
self.model = get_peft_model(self.model, lora_config)
|
96 |
-
logging.info("Applied LoRA configuration to the model")
|
97 |
-
return self.model
|
98 |
-
|
99 |
-
@spaces.GPU(duration=120)
|
100 |
-
def generate_response(self, message, image=None):
|
101 |
try:
|
102 |
self.ensure_models_loaded()
|
103 |
|
104 |
-
|
105 |
-
|
|
|
106 |
|
107 |
-
#
|
108 |
-
if
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
# Check if model has vision encoding capability
|
113 |
-
if not hasattr(self.model, "encode_image") and not hasattr(self.model, "get_vision_tower"):
|
114 |
-
logging.warning("Model doesn't have standard image encoding methods")
|
115 |
-
has_image = False
|
116 |
-
prompt = f"human: {message}\ngpt:"
|
117 |
-
else:
|
118 |
-
# For text-only input
|
119 |
-
prompt = f"human: {message}\ngpt:"
|
120 |
|
121 |
-
#
|
122 |
-
|
123 |
-
|
124 |
-
context += f"human: {turn[0]}\ngpt: {turn[1]}\n"
|
125 |
-
|
126 |
-
full_prompt = context + prompt
|
127 |
-
|
128 |
-
# Tokenize the input text
|
129 |
-
inputs = self.tokenizer(
|
130 |
-
full_prompt,
|
131 |
-
return_tensors="pt",
|
132 |
-
padding=True,
|
133 |
-
truncation=True,
|
134 |
-
max_length=self.max_length
|
135 |
-
)
|
136 |
-
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
137 |
|
138 |
-
|
139 |
-
if has_image:
|
140 |
try:
|
141 |
-
#
|
142 |
-
if isinstance(image, str):
|
143 |
-
image = Image.open(image)
|
144 |
-
elif isinstance(image, numpy.ndarray):
|
145 |
-
image = Image.fromarray(image)
|
146 |
-
|
147 |
-
# Ensure image is in RGB mode
|
148 |
-
if image.mode != 'RGB':
|
149 |
-
image = image.convert('RGB')
|
150 |
-
|
151 |
-
# Process the image with CLIP processor
|
152 |
image_inputs = self.processor(images=image, return_tensors="pt")
|
153 |
image_features = self.clip.get_image_features(
|
154 |
pixel_values=image_inputs.pixel_values.to(self.device)
|
155 |
)
|
156 |
-
|
157 |
-
|
158 |
-
if hasattr(self.model, "prepare_inputs_for_generation"):
|
159 |
-
logging.info("Using model's prepare_inputs_for_generation for image handling")
|
160 |
-
|
161 |
-
# Generate with image context
|
162 |
-
with torch.no_grad():
|
163 |
-
outputs = self.model.generate(
|
164 |
-
**inputs,
|
165 |
-
max_new_tokens=256,
|
166 |
-
min_length=20,
|
167 |
-
temperature=self.temperature,
|
168 |
-
do_sample=True,
|
169 |
-
top_p=self.top_p,
|
170 |
-
top_k=self.top_k,
|
171 |
-
repetition_penalty=self.repetition_penalty,
|
172 |
-
no_repeat_ngram_size=3,
|
173 |
-
use_cache=True,
|
174 |
-
pad_token_id=self.tokenizer.pad_token_id,
|
175 |
-
eos_token_id=self.tokenizer.eos_token_id
|
176 |
-
)
|
177 |
-
|
178 |
except Exception as e:
|
179 |
-
logging.error(f"Error
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
else:
|
198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
with torch.no_grad():
|
200 |
outputs = self.model.generate(
|
201 |
**inputs,
|
202 |
-
max_new_tokens=
|
203 |
min_length=20,
|
204 |
-
temperature=
|
205 |
do_sample=True,
|
206 |
-
top_p=
|
207 |
-
top_k=
|
208 |
-
repetition_penalty=
|
209 |
no_repeat_ngram_size=4,
|
210 |
use_cache=True,
|
211 |
pad_token_id=self.tokenizer.pad_token_id,
|
212 |
eos_token_id=self.tokenizer.eos_token_id
|
213 |
)
|
214 |
|
215 |
-
# Decode and clean up the response
|
216 |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
217 |
|
218 |
# Clean up response
|
@@ -235,40 +202,14 @@ class LLaVAPhiModel:
|
|
235 |
self.history = []
|
236 |
return None
|
237 |
|
238 |
-
|
239 |
-
def update_generation_params(self, temperature=0.3, top_p=0.92, top_k=50, repetition_penalty=1.2):
|
240 |
-
"""Update generation parameters to control hallucination tendency"""
|
241 |
-
self.temperature = temperature
|
242 |
-
self.top_p = top_p
|
243 |
-
self.top_k = top_k
|
244 |
-
self.repetition_penalty = repetition_penalty
|
245 |
-
return f"Generation parameters updated: temp={temperature}, top_p={top_p}, top_k={top_k}, rep_penalty={repetition_penalty}"
|
246 |
-
|
247 |
-
# New method to apply config file settings
|
248 |
-
def apply_config(self, config):
|
249 |
-
"""Apply settings from config file"""
|
250 |
-
model_params = config.get("model_params", {})
|
251 |
-
self.model_id = model_params.get("model_name", self.model_id)
|
252 |
-
self.max_length = model_params.get("max_length", 512)
|
253 |
-
|
254 |
-
# Update generation parameters if needed
|
255 |
-
training_params = config.get("training_params", {})
|
256 |
-
# Could add specific updates based on training_params if needed
|
257 |
-
|
258 |
-
return f"Applied configuration. Model: {self.model_id}, Max Length: {self.max_length}"
|
259 |
-
|
260 |
-
def create_demo(config=None):
|
261 |
try:
|
262 |
-
# Initialize with config file settings
|
263 |
model = LLaVAPhiModel()
|
264 |
|
265 |
-
if config:
|
266 |
-
model.apply_config(config)
|
267 |
-
|
268 |
with gr.Blocks(css="footer {visibility: hidden}") as demo:
|
269 |
gr.Markdown(
|
270 |
"""
|
271 |
-
# LLaVA-Phi Demo (
|
272 |
Chat with a vision-language model that can understand both text and images.
|
273 |
"""
|
274 |
)
|
@@ -288,66 +229,34 @@ def create_demo(config=None):
|
|
288 |
|
289 |
image = gr.Image(type="pil", label="Upload Image (Optional)")
|
290 |
|
291 |
-
# Add generation parameter controls
|
292 |
-
with gr.Accordion("Advanced Settings (Reduce Hallucinations)", open=False):
|
293 |
-
gr.Markdown("Adjust these parameters to control hallucination tendency")
|
294 |
-
temp_slider = gr.Slider(0.1, 1.0, value=0.3, step=0.1, label="Temperature (lower = more factual)")
|
295 |
-
top_p_slider = gr.Slider(0.5, 1.0, value=0.92, step=0.01, label="Top-p (nucleus sampling)")
|
296 |
-
top_k_slider = gr.Slider(10, 100, value=50, step=5, label="Top-k")
|
297 |
-
rep_penalty_slider = gr.Slider(1.0, 2.0, value=1.2, step=0.1, label="Repetition Penalty")
|
298 |
-
update_params = gr.Button("Update Parameters")
|
299 |
-
|
300 |
-
# Add debugging information box
|
301 |
-
debug_info = gr.Textbox(label="Debug Info", interactive=False)
|
302 |
-
|
303 |
-
# Add config information
|
304 |
-
if config:
|
305 |
-
config_info = f"Model: {model.model_id}, Max Length: {model.max_length}"
|
306 |
-
gr.Markdown(f"**Current Configuration:** {config_info}")
|
307 |
-
|
308 |
def respond(message, chat_history, image):
|
309 |
if not message and image is None:
|
310 |
-
return chat_history
|
311 |
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
debug_msg = "Response generated successfully"
|
316 |
-
return "", chat_history, debug_msg
|
317 |
-
except Exception as e:
|
318 |
-
debug_msg = f"Error: {str(e)}"
|
319 |
-
return message, chat_history, debug_msg
|
320 |
|
321 |
def clear_chat():
|
322 |
model.clear_history()
|
323 |
-
return None, None
|
324 |
-
|
325 |
-
def update_params_fn(temp, top_p, top_k, rep_penalty):
|
326 |
-
result = model.update_generation_params(temp, top_p, top_k, rep_penalty)
|
327 |
-
return f"Parameters updated: temp={temp}, top_p={top_p}, top_k={top_k}, rep_penalty={rep_penalty}"
|
328 |
|
329 |
submit.click(
|
330 |
respond,
|
331 |
[msg, chatbot, image],
|
332 |
-
[msg, chatbot
|
333 |
)
|
334 |
|
335 |
clear.click(
|
336 |
clear_chat,
|
337 |
None,
|
338 |
-
[chatbot, image
|
339 |
)
|
340 |
|
341 |
msg.submit(
|
342 |
respond,
|
343 |
[msg, chatbot, image],
|
344 |
-
[msg, chatbot
|
345 |
-
)
|
346 |
-
|
347 |
-
update_params.click(
|
348 |
-
update_params_fn,
|
349 |
-
[temp_slider, top_p_slider, top_k_slider, rep_penalty_slider],
|
350 |
-
[debug_info]
|
351 |
)
|
352 |
|
353 |
return demo
|
@@ -356,18 +265,7 @@ def create_demo(config=None):
|
|
356 |
raise
|
357 |
|
358 |
if __name__ == "__main__":
|
359 |
-
|
360 |
-
import json
|
361 |
-
|
362 |
-
try:
|
363 |
-
with open("config.json", "r") as f:
|
364 |
-
config = json.load(f)
|
365 |
-
logging.info("Successfully loaded config file")
|
366 |
-
except Exception as e:
|
367 |
-
logging.error(f"Error loading config: {str(e)}")
|
368 |
-
config = None
|
369 |
-
|
370 |
-
demo = create_demo(config)
|
371 |
demo.launch(
|
372 |
server_name="0.0.0.0",
|
373 |
server_port=7860,
|
|
|
10 |
logging.basicConfig(level=logging.INFO)
|
11 |
|
12 |
class LLaVAPhiModel:
|
13 |
+
def __init__(self, model_id="sagar007/Lava_phi"):
|
14 |
self.device = "cuda"
|
15 |
self.model_id = model_id
|
16 |
+
logging.info("Initializing LLaVA-Phi model...")
|
17 |
|
18 |
# Initialize tokenizer
|
19 |
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
|
21 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
22 |
|
23 |
try:
|
24 |
+
# Use CLIPProcessor directly instead of AutoProcessor
|
25 |
self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
26 |
logging.info("Successfully loaded CLIP processor")
|
27 |
except Exception as e:
|
28 |
logging.error(f"Failed to load CLIP processor: {str(e)}")
|
29 |
self.processor = None
|
30 |
|
|
|
31 |
self.history = []
|
32 |
self.model = None
|
33 |
self.clip = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
@spaces.GPU
|
36 |
def ensure_models_loaded(self):
|
37 |
"""Ensure models are loaded in GPU context"""
|
38 |
if self.model is None:
|
39 |
+
# Load main model with updated quantization config
|
40 |
from transformers import BitsAndBytesConfig
|
41 |
quantization_config = BitsAndBytesConfig(
|
42 |
+
load_in_4bit=True,
|
43 |
+
bnb_4bit_compute_dtype=torch.float16,
|
44 |
+
bnb_4bit_use_double_quant=True,
|
45 |
+
bnb_4bit_quant_type="nf4"
|
46 |
)
|
47 |
|
48 |
try:
|
|
|
54 |
trust_remote_code=True
|
55 |
)
|
56 |
self.model.config.pad_token_id = self.tokenizer.eos_token_id
|
57 |
+
logging.info("Successfully loaded main model")
|
58 |
except Exception as e:
|
59 |
logging.error(f"Failed to load main model: {str(e)}")
|
60 |
raise
|
61 |
|
62 |
if self.clip is None:
|
63 |
try:
|
64 |
+
# Use CLIPModel directly instead of AutoModel
|
65 |
+
self.clip = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(self.device)
|
66 |
+
logging.info("Successfully loaded CLIP model")
|
|
|
67 |
except Exception as e:
|
68 |
logging.error(f"Failed to load CLIP model: {str(e)}")
|
69 |
self.clip = None
|
70 |
|
71 |
+
@spaces.GPU
|
72 |
+
def process_image(self, image):
|
73 |
+
"""Process image through CLIP if available"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
try:
|
75 |
self.ensure_models_loaded()
|
76 |
|
77 |
+
if self.clip is None or self.processor is None:
|
78 |
+
logging.warning("CLIP model or processor not available")
|
79 |
+
return None
|
80 |
|
81 |
+
# Convert image to correct format
|
82 |
+
if isinstance(image, str):
|
83 |
+
image = Image.open(image)
|
84 |
+
elif isinstance(image, numpy.ndarray):
|
85 |
+
image = Image.fromarray(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
+
# Ensure image is in RGB mode
|
88 |
+
if image.mode != 'RGB':
|
89 |
+
image = image.convert('RGB')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
+
with torch.no_grad():
|
|
|
92 |
try:
|
93 |
+
# Process image with error handling
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
image_inputs = self.processor(images=image, return_tensors="pt")
|
95 |
image_features = self.clip.get_image_features(
|
96 |
pixel_values=image_inputs.pixel_values.to(self.device)
|
97 |
)
|
98 |
+
logging.info("Successfully processed image through CLIP")
|
99 |
+
return image_features
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
except Exception as e:
|
101 |
+
logging.error(f"Error during image processing: {str(e)}")
|
102 |
+
return None
|
103 |
+
except Exception as e:
|
104 |
+
logging.error(f"Error in process_image: {str(e)}")
|
105 |
+
return None
|
106 |
+
|
107 |
+
@spaces.GPU(duration=120)
|
108 |
+
def generate_response(self, message, image=None):
|
109 |
+
try:
|
110 |
+
self.ensure_models_loaded()
|
111 |
+
|
112 |
+
if image is not None:
|
113 |
+
image_features = self.process_image(image)
|
114 |
+
has_image = image_features is not None
|
115 |
+
if not has_image:
|
116 |
+
message = "Note: Image processing is not available - continuing with text only.\n" + message
|
117 |
+
|
118 |
+
prompt = f"human: {'<image>' if has_image else ''}\n{message}\ngpt:"
|
119 |
+
context = ""
|
120 |
+
for turn in self.history[-3:]:
|
121 |
+
context += f"human: {turn[0]}\ngpt: {turn[1]}\n"
|
122 |
+
|
123 |
+
full_prompt = context + prompt
|
124 |
+
inputs = self.tokenizer(
|
125 |
+
full_prompt,
|
126 |
+
return_tensors="pt",
|
127 |
+
padding=True,
|
128 |
+
truncation=True,
|
129 |
+
max_length=512
|
130 |
+
)
|
131 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
132 |
+
|
133 |
+
if has_image:
|
134 |
+
inputs["image_features"] = image_features
|
135 |
+
|
136 |
+
with torch.no_grad():
|
137 |
+
outputs = self.model.generate(
|
138 |
+
**inputs,
|
139 |
+
max_new_tokens=256,
|
140 |
+
min_length=20,
|
141 |
+
temperature=0.7,
|
142 |
+
do_sample=True,
|
143 |
+
top_p=0.9,
|
144 |
+
top_k=40,
|
145 |
+
repetition_penalty=1.5,
|
146 |
+
no_repeat_ngram_size=3,
|
147 |
+
use_cache=True,
|
148 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
149 |
+
eos_token_id=self.tokenizer.eos_token_id
|
150 |
+
)
|
151 |
else:
|
152 |
+
prompt = f"human: {message}\ngpt:"
|
153 |
+
context = ""
|
154 |
+
for turn in self.history[-3:]:
|
155 |
+
context += f"human: {turn[0]}\ngpt: {turn[1]}\n"
|
156 |
+
|
157 |
+
full_prompt = context + prompt
|
158 |
+
inputs = self.tokenizer(
|
159 |
+
full_prompt,
|
160 |
+
return_tensors="pt",
|
161 |
+
padding=True,
|
162 |
+
truncation=True,
|
163 |
+
max_length=512
|
164 |
+
)
|
165 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
166 |
+
|
167 |
with torch.no_grad():
|
168 |
outputs = self.model.generate(
|
169 |
**inputs,
|
170 |
+
max_new_tokens=150,
|
171 |
min_length=20,
|
172 |
+
temperature=0.6,
|
173 |
do_sample=True,
|
174 |
+
top_p=0.85,
|
175 |
+
top_k=30,
|
176 |
+
repetition_penalty=1.8,
|
177 |
no_repeat_ngram_size=4,
|
178 |
use_cache=True,
|
179 |
pad_token_id=self.tokenizer.pad_token_id,
|
180 |
eos_token_id=self.tokenizer.eos_token_id
|
181 |
)
|
182 |
|
|
|
183 |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
184 |
|
185 |
# Clean up response
|
|
|
202 |
self.history = []
|
203 |
return None
|
204 |
|
205 |
+
def create_demo():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
try:
|
|
|
207 |
model = LLaVAPhiModel()
|
208 |
|
|
|
|
|
|
|
209 |
with gr.Blocks(css="footer {visibility: hidden}") as demo:
|
210 |
gr.Markdown(
|
211 |
"""
|
212 |
+
# LLaVA-Phi Demo (ZeroGPU)
|
213 |
Chat with a vision-language model that can understand both text and images.
|
214 |
"""
|
215 |
)
|
|
|
229 |
|
230 |
image = gr.Image(type="pil", label="Upload Image (Optional)")
|
231 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
def respond(message, chat_history, image):
|
233 |
if not message and image is None:
|
234 |
+
return chat_history
|
235 |
|
236 |
+
response = model.generate_response(message, image)
|
237 |
+
chat_history.append((message, response))
|
238 |
+
return "", chat_history
|
|
|
|
|
|
|
|
|
|
|
239 |
|
240 |
def clear_chat():
|
241 |
model.clear_history()
|
242 |
+
return None, None
|
|
|
|
|
|
|
|
|
243 |
|
244 |
submit.click(
|
245 |
respond,
|
246 |
[msg, chatbot, image],
|
247 |
+
[msg, chatbot],
|
248 |
)
|
249 |
|
250 |
clear.click(
|
251 |
clear_chat,
|
252 |
None,
|
253 |
+
[chatbot, image],
|
254 |
)
|
255 |
|
256 |
msg.submit(
|
257 |
respond,
|
258 |
[msg, chatbot, image],
|
259 |
+
[msg, chatbot],
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
)
|
261 |
|
262 |
return demo
|
|
|
265 |
raise
|
266 |
|
267 |
if __name__ == "__main__":
|
268 |
+
demo = create_demo()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
demo.launch(
|
270 |
server_name="0.0.0.0",
|
271 |
server_port=7860,
|