# --- Imports --- import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer from duckduckgo_search import DDGS import time import torch from datetime import datetime import os import subprocess import numpy as np from typing import List, Dict, Tuple, Any, Optional, Union from functools import lru_cache # No asyncio needed import threading # No ThreadPoolExecutor needed import warnings import traceback # For detailed error logging import re # For text cleaning import shutil # For checking sudo/file operations import html # For escaping HTML import sys # For sys.path manipulation import spaces # <<<--- IMPORT SPACES FOR THE DECORATOR # --- Configuration --- MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B" MAX_SEARCH_RESULTS = 5 TTS_SAMPLE_RATE = 24000 MAX_TTS_CHARS = 1000 MAX_NEW_TOKENS = 300 TEMPERATURE = 0.7 TOP_P = 0.95 KOKORO_PATH = 'Kokoro-82M' LLM_GPU_DURATION = 120 # Seconds TTS_GPU_DURATION = 60 # Seconds # --- Initialization --- warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated") warnings.filterwarnings("ignore", message="Backend 'inductor' is not available.") # --- LLM Initialization --- llm_model: Optional[AutoModelForCausalLM] = None llm_tokenizer: Optional[AutoTokenizer] = None try: print("[LLM Init] Initializing Language Model...") llm_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) llm_tokenizer.pad_token = llm_tokenizer.eos_token llm_device = "cuda" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if llm_device == "cuda" else torch.float32 device_map = "auto" print(f"[LLM Init] Preparing model load (target device via ZeroGPU: cuda, dtype={torch_dtype})") llm_model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, device_map=device_map, low_cpu_mem_usage=True, torch_dtype=torch_dtype, ) print(f"[LLM Init] LLM loaded configuration successfully.") llm_model.eval() except Exception as e: print(f"[LLM Init] FATAL: Error initializing LLM model: {str(e)}") print(traceback.format_exc()); llm_model = None; llm_tokenizer = None print("[LLM Init] LLM features will be unavailable.") # --- TTS Initialization --- VOICE_CHOICES = { 'πΊπΈ Female (Default)': 'af', 'πΊπΈ Bella': 'af_bella', 'πΊπΈ Sarah': 'af_sarah', 'πΊπΈ Nicole': 'af_nicole' } TTS_ENABLED = False tts_model: Optional[Any] = None voicepacks: Dict[str, Any] = {} tts_device = "cpu" def _run_subprocess(cmd: List[str], check: bool = True, cwd: Optional[str] = None, timeout: int = 300) -> subprocess.CompletedProcess: """Runs a subprocess command, captures output, and handles errors.""" print(f"Running command: {' '.join(cmd)}") try: result = subprocess.run(cmd, check=check, capture_output=True, text=True, cwd=cwd, timeout=timeout) # Print output more selectively if not check or result.returncode != 0: if result.stdout: print(f" Stdout: {result.stdout.strip()}") if result.stderr: print(f" Stderr: {result.stderr.strip()}") elif result.returncode == 0 and ('clone' in cmd or 'pull' in cmd or 'install' in cmd): print(f" Command successful.") return result except FileNotFoundError: print(f" Error: Command not found - {cmd[0]}"); raise except subprocess.TimeoutExpired: print(f" Error: Command timed out - {' '.join(cmd)}"); raise except subprocess.CalledProcessError as e: print(f" Error running command: {' '.join(e.cmd)} (Code: {e.returncode})") if e.stdout: print(f" Stdout: {e.stdout.strip()}") if e.stderr: print(f" Stderr: {e.stderr.strip()}") raise def setup_tts_task(): """Initializes Kokoro TTS model and dependencies (runs in background).""" global TTS_ENABLED, tts_model, voicepacks, tts_device print("[TTS Setup] Starting background initialization...") tts_device_target = "cuda" # Target device when GPU is attached by decorator print(f"[TTS Setup] Target device for TTS model (via @spaces.GPU): {tts_device_target}") can_sudo = shutil.which('sudo') is not None apt_cmd_prefix = ['sudo'] if can_sudo else [] absolute_kokoro_path = os.path.abspath(KOKORO_PATH) try: # 1. Clone/Update Repo if not os.path.exists(absolute_kokoro_path): print(f"[TTS Setup] Cloning repository to {absolute_kokoro_path}...") try: _run_subprocess(['git', 'lfs', 'install', '--system', '--skip-repo']) except Exception as lfs_err: print(f"[TTS Setup] Warning: git lfs install failed: {lfs_err}") _run_subprocess(['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M', absolute_kokoro_path]) try: _run_subprocess(['git', 'lfs', 'pull'], cwd=absolute_kokoro_path) except Exception as lfs_pull_err: print(f"[TTS Setup] Warning: git lfs pull failed: {lfs_pull_err}") else: print(f"[TTS Setup] Directory {absolute_kokoro_path} already exists.") # 2. Install espeak print("[TTS Setup] Checking/Installing espeak...") try: _run_subprocess(apt_cmd_prefix + ['apt-get', 'update', '-qq']) _run_subprocess(apt_cmd_prefix + ['apt-get', 'install', '-y', '-qq', 'espeak-ng']) print("[TTS Setup] espeak-ng installed or already present.") except Exception: print("[TTS Setup] espeak-ng installation failed, trying espeak...") try: _run_subprocess(apt_cmd_prefix + ['apt-get', 'install', '-y', '-qq', 'espeak']); print("[TTS Setup] espeak installed or already present.") except Exception as espeak_err: print(f"[TTS Setup] ERROR: Failed to install espeak: {espeak_err}. TTS disabled."); return # 3. Load Kokoro Model and Voices sys_path_updated = False if os.path.exists(absolute_kokoro_path): print(f"[TTS Setup] Checking contents of: {absolute_kokoro_path}"); try: print(f"[TTS Setup] Contents: {os.listdir(absolute_kokoro_path)}") except OSError as list_err: print(f"[TTS Setup] Warning: Could not list directory contents: {list_err}") if absolute_kokoro_path not in sys.path: sys.path.insert(0, absolute_kokoro_path); sys_path_updated = True; print(f"[TTS Setup] Temporarily added {absolute_kokoro_path} to sys.path.") try: print("[TTS Setup] Attempting to import Kokoro modules...") from models import build_model from kokoro import generate as generate_tts_internal print("[TTS Setup] Kokoro modules imported successfully.") globals()['build_model'] = build_model; globals()['generate_tts_internal'] = generate_tts_internal model_file = os.path.join(absolute_kokoro_path, 'kokoro-v0_19.pth') if not os.path.exists(model_file): print(f"[TTS Setup] ERROR: Model file {model_file} not found. TTS disabled."); return print(f"[TTS Setup] Loading TTS model config from {model_file} (to CPU first)...") tts_model = build_model(model_file, 'cpu'); tts_model.eval(); print("[TTS Setup] TTS model structure loaded (CPU).") loaded_voices = 0 for voice_name, voice_id in VOICE_CHOICES.items(): vp_path = os.path.join(absolute_kokoro_path, 'voices', f'{voice_id}.pt') if os.path.exists(vp_path): try: voicepacks[voice_id] = torch.load(vp_path, map_location='cpu'); loaded_voices += 1; print(f"[TTS Setup] Loaded voice: {voice_id} ({voice_name}) to CPU") except Exception as e: print(f"[TTS Setup] Warning: Failed to load voice {voice_id}: {str(e)}") else: print(f"[TTS Setup] Info: Voice file {vp_path} not found.") if loaded_voices == 0: print("[TTS Setup] ERROR: No voicepacks loaded. TTS disabled."); tts_model = None; return TTS_ENABLED = True; print(f"[TTS Setup] Initialization successful. {loaded_voices} voices loaded. TTS Enabled: {TTS_ENABLED}") except ImportError as ie: print(f"[TTS Setup] ERROR: Failed to import Kokoro modules: {ie}."); print(traceback.format_exc()) except Exception as load_err: print(f"[TTS Setup] ERROR: Exception during TTS loading: {load_err}. TTS disabled."); print(traceback.format_exc()) finally: if sys_path_updated: # Cleanup sys.path try: if sys.path[0] == absolute_kokoro_path: sys.path.pop(0) elif absolute_kokoro_path in sys.path: sys.path.remove(absolute_kokoro_path) print(f"[TTS Setup] Cleaned up sys.path.") except Exception as cleanup_err: print(f"[TTS Setup] Warning: Error cleaning sys.path: {cleanup_err}") else: print(f"[TTS Setup] ERROR: Directory {absolute_kokoro_path} not found. TTS disabled.") except Exception as e: print(f"[TTS Setup] ERROR: Unexpected error during setup: {str(e)}"); print(traceback.format_exc()); TTS_ENABLED = False; tts_model = None; voicepacks.clear() print("Starting TTS setup thread...") tts_setup_thread = threading.Thread(target=setup_tts_task, daemon=True) tts_setup_thread.start() # --- Core Logic Functions (Synchronous + @spaces.GPU) --- @lru_cache(maxsize=128) def get_web_results_sync(query: str, max_results: int = MAX_SEARCH_RESULTS) -> List[Dict[str, Any]]: """Synchronous web search function with caching.""" print(f"[Web Search] Searching (sync): '{query}' (max_results={max_results})") try: with DDGS() as ddgs: results = list(ddgs.text(query, max_results=max_results, safesearch='moderate', timelimit='y')) print(f"[Web Search] Found {len(results)} results.") formatted = [{"id": i + 1, "title": res.get("title", "No Title"), "snippet": res.get("body", "No Snippet"), "url": res.get("href", "#")} for i, res in enumerate(results)] return formatted except Exception as e: print(f"[Web Search] Error: {e}"); return [] def format_llm_prompt(query: str, context: List[Dict[str, Any]]) -> str: """Formats the prompt for the LLM.""" current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") context_str = "\n\n".join([f"[{res['id']}] {html.escape(res['title'])}\n{html.escape(res['snippet'])}" for res in context]) if context else "No relevant web context found." return f"""SYSTEM: You are a helpful AI assistant. Answer the user's query based *only* on the provided web search context. Cite sources using bracket notation like [1], [2]. If the context is insufficient, state that clearly. Use markdown for formatting. Do not add external information. Current Time: {current_time}\n\nCONTEXT:\n---\n{context_str}\n---\n\nUSER: {html.escape(query)}\n\nASSISTANT:""" def format_sources_html(web_results: List[Dict[str, Any]]) -> str: """Formats search results into HTML for display.""" if not web_results: return "<div class='no-sources'>No sources found.</div>" items_html = "" for res in web_results: title_safe = html.escape(res.get("title", "Source")); snippet_safe = html.escape(res.get("snippet", "")[:150] + ("..." if len(res.get("snippet", "")) > 150 else "")); url = html.escape(res.get("url", "#")) items_html += f"""<div class='source-item'><div class='source-number'>[{res['id']}]</div><div class='source-content'><a href="{url}" target="_blank" class='source-title' title="{url}">{title_safe}</a><div class='source-snippet'>{snippet_safe}</div></div></div>""" return f"<div class='sources-container'>{items_html}</div>" @spaces.GPU(duration=LLM_GPU_DURATION) def generate_llm_answer(prompt: str) -> str: """Generates answer using the LLM (Synchronous, GPU-decorated).""" if not llm_model or not llm_tokenizer: print("[LLM Generate] LLM unavailable."); return "Error: Language Model unavailable." print(f"[LLM Generate] Requesting generation (sync, GPU) (prompt length {len(prompt)})...") start_time = time.time() try: # ZeroGPU context should place model on GPU here current_device = next(llm_model.parameters()).device; print(f"[LLM Generate] Model device: {current_device}") inputs = llm_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=1024, return_attention_mask=True).to(current_device) with torch.inference_mode(), torch.cuda.amp.autocast(enabled=(llm_model.dtype == torch.float16)): outputs = llm_model.generate(inputs.input_ids, attention_mask=inputs.attention_mask, max_new_tokens=MAX_NEW_TOKENS, temperature=TEMPERATURE, top_p=TOP_P, pad_token_id=llm_tokenizer.eos_token_id, eos_token_id=llm_tokenizer.eos_token_id, do_sample=True, num_return_sequences=1) output_ids = outputs[0][inputs.input_ids.shape[1]:]; answer_part = llm_tokenizer.decode(output_ids, skip_special_tokens=True).strip() if not answer_part: answer_part = "*Model generated empty response.*" end_time = time.time(); print(f"[LLM Generate] Complete in {end_time - start_time:.2f}s.") return answer_part except Exception as e: print(f"[LLM Generate] Error: {e}"); print(traceback.format_exc()); return f"Error generating answer." @spaces.GPU(duration=TTS_GPU_DURATION) def generate_tts_speech(text: str, voice_id: str = 'af') -> Optional[Tuple[int, np.ndarray]]: """Generates speech using TTS model (Synchronous, GPU-decorated) with debugging.""" # 1. Check initial state if not TTS_ENABLED: print("[TTS Generate] Skipping: TTS is not enabled."); return None if not tts_model: print("[TTS Generate] Skipping: TTS model object is None."); return None if 'generate_tts_internal' not in globals(): print("[TTS Generate] Skipping: generate_tts_internal not found."); return None print(f"[TTS Generate] Requesting speech (sync, GPU) for text (len {len(text)}), req voice '{voice_id}'...") start_time = time.time() # 2. Check input text validity if not text or not text.strip() or text.startswith("Error:") or text.startswith("*Model"): print(f"[TTS Generate] Skipping: Invalid/empty text: '{text[:100]}...'") return None try: # 3. Verify and select voice pack actual_voice_id = voice_id if voice_id not in voicepacks: print(f"[TTS Generate] Warn: Voice '{voice_id}' missing. Trying 'af'. Available: {list(voicepacks.keys())}") actual_voice_id = 'af' if 'af' not in voicepacks: print("[TTS Generate] Error: Default voice 'af' missing."); return None print(f"[TTS Generate] Using voice_id: {actual_voice_id}") voice_pack_data = voicepacks[actual_voice_id] if voice_pack_data is None: print(f"[TTS Generate] Error: Voice pack data for '{actual_voice_id}' is None."); return None # 4. Clean text clean_text = re.sub(r'\[\d+\](\[\d+\])*', '', text); clean_text = re.sub(r'```.*?```', '', clean_text, flags=re.DOTALL); clean_text = re.sub(r'`[^`]*`', '', clean_text); clean_text = re.sub(r'^\s*[\*->]\s*', '', clean_text, flags=re.MULTILINE); clean_text = re.sub(r'[\*#_]', '', clean_text); clean_text = html.unescape(clean_text); clean_text = ' '.join(clean_text.split()) print(f"[TTS Generate] Cleaned text (first 100): '{clean_text[:100]}...'") if not clean_text: print("[TTS Generate] Skipping: Text empty after cleaning."); return None # 5. Truncate text if len(clean_text) > MAX_TTS_CHARS: print(f"[TTS Generate] Truncating cleaned text from {len(clean_text)} to {MAX_TTS_CHARS} chars.") clean_text = clean_text[:MAX_TTS_CHARS]; last_punct = max(clean_text.rfind(p) for p in '.?!; '); if last_punct != -1: clean_text = clean_text[:last_punct+1] clean_text += "..." # 6. Prepare for GPU execution current_device = 'cuda' # Assume GPU attached by decorator moved_voice_pack = None gen_func = globals()['generate_tts_internal'] print(f"[TTS Generate] Preparing for generation on device '{current_device}'...") try: # 7. Move model and data to GPU print(f" TTS model device before move: {tts_model.device if hasattr(tts_model, 'device') else 'N/A'}") tts_model.to(current_device) print(f" TTS model device after move: {tts_model.device}") print(" Moving voice pack data to CUDA...") if isinstance(voice_pack_data, dict): moved_voice_pack = {k: v.to(current_device) if isinstance(v, torch.Tensor) else v for k, v in voice_pack_data.items()} elif isinstance(voice_pack_data, torch.Tensor): moved_voice_pack = voice_pack_data.to(current_device) else: moved_voice_pack = voice_pack_data print(" Voice pack data moved (or assumed not tensor).") # 8. Call the internal TTS function print(f"[TTS Generate] Calling Kokoro generate function (language code 'eng')...") # --- Using language code 'eng' --- audio_data, sr = gen_func(tts_model, clean_text, moved_voice_pack, 'eng') print(f"[TTS Generate] Kokoro function returned. Type: {type(audio_data)}, Sample Rate: {sr}") except Exception as kokoro_err: print(f"[TTS Generate] **** ERROR during Kokoro generate call ****: {kokoro_err}") print(traceback.format_exc()); return None finally: # Move model back to CPU try: print("[TTS Generate] Moving TTS model back to CPU...") if tts_model is not None: tts_model.to('cpu') except Exception as move_back_err: print(f"[TTS Generate] Warn: Could not move TTS model back to CPU: {move_back_err}") # 9. Process output audio data if audio_data is None: print("[TTS Generate] Kokoro function returned None."); return None print(f"[TTS Generate] Processing audio output. Type: {type(audio_data)}") if isinstance(audio_data, torch.Tensor): print(f" Original Tensor shape: {audio_data.shape}, dtype: {audio_data.dtype}, device: {audio_data.device}"); audio_np = audio_data.detach().cpu().numpy() elif isinstance(audio_data, np.ndarray): print(f" Original Numpy shape: {audio_data.shape}, dtype: {audio_data.dtype}"); audio_np = audio_data else: print("[TTS Generate] Error: Unexpected audio data type from Kokoro."); return None audio_np = audio_np.flatten().astype(np.float32) print(f"[TTS Generate] Final Numpy Array shape: {audio_np.shape}, dtype: {audio_np.dtype}, min: {np.min(audio_np):.2f}, max: {np.max(audio_np):.2f}") if np.max(np.abs(audio_np)) < 1e-4: print("[TTS Generate] Warning: Generated audio appears silent.") end_time = time.time(); print(f"[TTS Generate] Audio generated successfully in {end_time - start_time:.2f}s.") actual_sr = sr if isinstance(sr, int) and sr > 0 else TTS_SAMPLE_RATE print(f"[TTS Generate] Returning audio tuple with SR={actual_sr}.") return (actual_sr, audio_np) except Exception as e: print(f"[TTS Generate] **** UNEXPECTED ERROR in generate_tts_speech ****: {str(e)}") print(traceback.format_exc()); return None def get_voice_id_from_display(voice_display_name: str) -> str: """Maps display name to voice ID.""" return VOICE_CHOICES.get(voice_display_name, 'af') # --- Gradio Interaction Logic (Synchronous) --- ChatHistoryType = List[Dict[str, Optional[str]]] def handle_interaction( query: str, history: ChatHistoryType, selected_voice_display_name: str ) -> Tuple[ChatHistoryType, str, str, Optional[Tuple[int, np.ndarray]], Any]: """Synchronous function to handle user queries for ZeroGPU.""" print(f"\n--- Handling Query (Sync) ---"); query = query.strip() print(f"Query: '{query}', Voice: '{selected_voice_display_name}'") if not query: print("Empty query."); return history, "*Please enter query.*", "<div class='no-sources'>Enter query.</div>", None, gr.Button(value="Search", interactive=True) current_history: ChatHistoryType = history + [{"role": "user", "content": query}, {"role": "assistant", "content": "*Processing...*"}] status_update = "*Processing... Please wait.*"; sources_html = "<div class='searching'><span>Searching...</span></div>"; audio_data = None button_update = gr.Button(value="Processing...", interactive=False); final_answer = "" try: print("[Handler] Web search..."); start_t = time.time() web_results = get_web_results_sync(query); print(f"[Handler] Web search took {time.time()-start_t:.2f}s") sources_html = format_sources_html(web_results) print("[Handler] LLM generation..."); start_t = time.time() llm_prompt = format_llm_prompt(query, web_results) final_answer = generate_llm_answer(llm_prompt); print(f"[Handler] LLM generation took {time.time()-start_t:.2f}s") status_update = final_answer tts_status_message = "" print(f"[Handler] TTS Check: Enabled={TTS_ENABLED}, Model?={tts_model is not None}") if TTS_ENABLED and tts_model is not None and not final_answer.startswith("Error"): print("[Handler] TTS generation..."); start_t = time.time() voice_id = get_voice_id_from_display(selected_voice_display_name) audio_data = generate_tts_speech(final_answer, voice_id) # Call decorated function print(f"[Handler] TTS generation took {time.time()-start_t:.2f}s") print(f"[Handler] Received audio_data: type={type(audio_data)}, shape={(audio_data[1].shape if audio_data else 'N/A')}") if audio_data is None: tts_status_message = "\n\n*(Audio generation failed)*" elif not TTS_ENABLED or tts_model is None: tts_status_message = "\n\n*(TTS unavailable)*" if not tts_setup_thread.is_alive() else "\n\n*(TTS initializing...)*" else: tts_status_message = "\n\n*(Audio skipped due to answer error)*" final_answer_with_status = final_answer + tts_status_message status_update = final_answer_with_status current_history[-1]["content"] = final_answer_with_status # Update final history item button_update = gr.Button(value="Search", interactive=True) print("--- Query Handling Complete (Sync) ---") except Exception as e: print(f"[Handler] Error: {e}"); print(traceback.format_exc()) error_message = f"*Error: {e}*"; current_history[-1]["content"] = error_message status_update = error_message; sources_html = "<div class='error'>Request failed.</div>"; audio_data = None button_update = gr.Button(value="Search", interactive=True) print(f"[Handler] Returning: hist_len={len(current_history)}, status_len={len(status_update)}, sources_len={len(sources_html)}, audio?={audio_data is not None}, button_interact={button_update.interactive}") return current_history, status_update, sources_html, audio_data, button_update # --- Gradio UI Definition --- css = """ /* ... [Your existing refined CSS] ... */ .gradio-container { max-width: 1200px !important; background-color: #f7f7f8 !important; } #header { text-align: center; margin-bottom: 2rem; padding: 2rem 0; background: linear-gradient(135deg, #1a1b1e, #2d2e32); border-radius: 12px; color: white; box-shadow: 0 8px 32px rgba(0,0,0,0.2); } #header h1 { color: white; font-size: 2.5rem; margin-bottom: 0.5rem; text-shadow: 0 2px 4px rgba(0,0,0,0.3); } #header h3 { color: #a8a9ab; } .search-container { background: #ffffff; border: 1px solid #e0e0e0; border-radius: 12px; box-shadow: 0 4px 16px rgba(0,0,0,0.05); padding: 1.5rem; margin-bottom: 1.5rem; } .search-box { padding: 0; margin-bottom: 1rem; display: flex; align-items: center; } .search-box .gradio-textbox { border-radius: 8px 0 0 8px !important; height: 44px !important; flex-grow: 1; } .search-box .gradio-dropdown { border-radius: 0 !important; margin-left: -1px; margin-right: -1px; height: 44px !important; width: 180px; flex-shrink: 0; } .search-box .gradio-button { border-radius: 0 8px 8px 0 !important; height: 44px !important; flex-shrink: 0; } .search-box input[type="text"] { background: #f7f7f8 !important; border: 1px solid #d1d5db !important; color: #1f2937 !important; transition: all 0.3s ease; height: 100% !important; padding: 0 12px !important;} .search-box input[type="text"]:focus { border-color: #2563eb !important; box-shadow: 0 0 0 2px rgba(37, 99, 235, 0.2) !important; background: white !important; z-index: 1; } .search-box input[type="text"]::placeholder { color: #9ca3af !important; } .search-box button { background: #2563eb !important; border: none !important; color: white !important; box-shadow: 0 1px 2px rgba(0,0,0,0.05) !important; transition: all 0.3s ease !important; height: 100% !important; } .search-box button:hover { background: #1d4ed8 !important; } .search-box button:disabled { background: #9ca3af !important; cursor: not-allowed; } .results-container { background: transparent; padding: 0; margin-top: 1.5rem; } .answer-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1rem; color: #1f2937; margin-bottom: 0.5rem; box-shadow: 0 2px 8px rgba(0,0,0,0.05); min-height: 50px;} .answer-box p { color: #374151; line-height: 1.7; margin:0;} .answer-box code { background: #f3f4f6; border-radius: 4px; padding: 2px 4px; color: #4b5563; font-size: 0.9em; } .sources-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1.5rem; } .sources-box h3 { margin-top: 0; margin-bottom: 1rem; color: #111827; font-size: 1.2rem; } .sources-container { margin-top: 0; } .source-item { display: flex; padding: 10px 0; margin: 0; border-bottom: 1px solid #f3f4f6; } .source-item:last-child { border-bottom: none; } .source-number { font-weight: bold; margin-right: 12px; color: #6b7280; width: 20px; text-align: right; flex-shrink: 0;} .source-content { flex: 1; min-width: 0;} .source-title { color: #2563eb; font-weight: 500; text-decoration: none; display: block; margin-bottom: 4px; font-size: 0.95em; white-space: nowrap; overflow: hidden; text-overflow: ellipsis;} .source-title:hover { color: #1d4ed8; text-decoration: underline; } .source-snippet { color: #4b5563; font-size: 0.9em; line-height: 1.5; } .chat-history { max-height: 500px; overflow-y: auto; background: #f9fafb; border: 1px solid #e5e7eb; border-radius: 8px; scrollbar-width: thin; scrollbar-color: #d1d5db #f9fafb; } .chat-history > div { padding: 1rem; } .chat-history::-webkit-scrollbar { width: 6px; } .chat-history::-webkit-scrollbar-track { background: #f9fafb; } .chat-history::-webkit-scrollbar-thumb { background-color: #d1d5db; border-radius: 20px; } .examples-container { background: #f9fafb; border-radius: 8px; padding: 1rem; margin-top: 1rem; border: 1px solid #e5e7eb; } .examples-container button { background: white !important; border: 1px solid #d1d5db !important; color: #374151 !important; margin: 4px !important; font-size: 0.9em !important; padding: 6px 12px !important; border-radius: 4px !important; cursor: pointer;} .examples-container button:hover { background: #f3f4f6 !important; border-color: #adb5bd !important; } .markdown-content { color: #374151 !important; font-size: 1rem; line-height: 1.7; } /* ... other markdown styles ... */ .voice-selector { margin: 0; padding: 0; height: 100%; } .voice-selector div[data-testid="dropdown"] { height: 100% !important; border-radius: 0 !important;} .voice-selector select { background: white !important; color: #374151 !important; border: 1px solid #d1d5db !important; border-left: none !important; border-right: none !important; border-radius: 0 !important; height: 100% !important; padding: 0 10px !important; appearance: none !important; -webkit-appearance: none !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%236b7280' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important; background-position: right 0.5rem center !important; background-repeat: no-repeat !important; background-size: 1.5em 1.5em !important; padding-right: 2.5rem !important; } .voice-selector select:focus { border-color: #2563eb !important; box-shadow: none !important; z-index: 1; position: relative;} .audio-player { margin-top: 1rem; background: #f9fafb !important; border-radius: 8px !important; padding: 0.5rem !important; border: 1px solid #e5e7eb;} .audio-player audio { width: 100% !important; } .searching, .error { padding: 1rem; border-radius: 8px; text-align: center; margin: 1rem 0; border: 1px dashed; } .searching { background: #eff6ff; color: #3b82f6; border-color: #bfdbfe; } .error { background: #fef2f2; color: #ef4444; border-color: #fecaca; } .no-sources { padding: 1rem; text-align: center; color: #6b7280; background: #f9fafb; border-radius: 8px; border: 1px solid #e5e7eb;} @keyframes pulse { 0% { opacity: 0.7; } 50% { opacity: 1; } 100% { opacity: 0.7; } } .searching span { animation: pulse 1.5s infinite ease-in-out; display: inline-block; } /* Dark Mode Styles (optional) */ .dark .gradio-container { background-color: #111827 !important; } /* ... other dark mode rules ... */ """ with gr.Blocks(title="AI Search Assistant (ZeroGPU Sync)", css=css, theme=gr.themes.Default(primary_hue="blue")) as demo: chat_history_state = gr.State([]) with gr.Column(): with gr.Column(elem_id="header"): gr.Markdown("# π AI Search Assistant (ZeroGPU)\n### (UI blocks during processing)") with gr.Column(elem_classes="search-container"): with gr.Row(elem_classes="search-box"): search_input = gr.Textbox(label="", placeholder="Ask anything...", scale=5, container=False) voice_select = gr.Dropdown(choices=list(VOICE_CHOICES.keys()), value=list(VOICE_CHOICES.keys())[0], label="", scale=1, min_width=180, container=False, elem_classes="voice-selector") search_btn = gr.Button("Search", variant="primary", scale=0, min_width=100) with gr.Row(elem_classes="results-container"): with gr.Column(scale=3): chatbot_display = gr.Chatbot(label="Conversation", bubble_full_width=True, height=500, elem_classes="chat-history", type="messages", show_label=False, avatar_images=(None, os.path.join(KOKORO_PATH, "icon.png") if os.path.exists(os.path.join(KOKORO_PATH, "icon.png")) else "https://huggingface.co/spaces/gradio/chatbot-streaming/resolve/main/avatar.png")) answer_status_output = gr.Markdown(value="*Enter query to start.*", elem_classes="answer-box markdown-content") # Shows final text audio_player = gr.Audio(label="Voice Response", type="numpy", autoplay=False, show_label=False, elem_classes="audio-player") with gr.Column(scale=2): with gr.Column(elem_classes="sources-box"): gr.Markdown("### Sources"); sources_output_html = gr.HTML(value="<div class='no-sources'>Sources appear here.</div>") with gr.Row(elem_classes="examples-container"): gr.Examples(examples=["Latest AI news", "Explain LLMs", "Flu symptoms/prevention", "Python vs JS", "Paris Agreement"], inputs=search_input, label="Try examples:") event_inputs = [search_input, chat_history_state, voice_select] event_outputs = [ chatbot_display, answer_status_output, sources_output_html, audio_player, search_btn ] search_btn.click(fn=handle_interaction, inputs=event_inputs, outputs=event_outputs) search_input.submit(fn=handle_interaction, inputs=event_inputs, outputs=event_outputs) if __name__ == "__main__": print("Starting Gradio application (Synchronous for ZeroGPU)...") time.sleep(1) # Wait for TTS setup thread demo.queue(max_size=20).launch(debug=True, share=True) print("Gradio application stopped.")