Spaces:
Running
on
Zero
Running
on
Zero
File size: 31,988 Bytes
6560c55 cf40b67 a6e4f9f cf40b67 a6e4f9f cf40b67 a6e4f9f ffc273f b8c63a2 75a1aab b8c63a2 75a1aab 3d63694 8652f53 ffc273f 6560c55 ffc273f 6560c55 aa6ca85 b8c63a2 aa6ca85 ffc273f b8c63a2 aa6ca85 75a1aab b8c63a2 ffc273f 3d63694 ffc273f 6560c55 ffc273f 75a1aab aa6ca85 ffc273f 75a1aab b8c63a2 75a1aab 6560c55 a6e4f9f 6560c55 75a1aab 6560c55 b8c63a2 ffc273f 75a1aab a6e4f9f 6560c55 ffc273f 6560c55 ffc273f 6560c55 75a1aab 6560c55 75a1aab 6560c55 75a1aab ffc273f 75a1aab ffc273f 6560c55 ffc273f 75a1aab ffc273f 75a1aab 8652f53 ffc273f aa6ca85 b8c63a2 aa6ca85 6560c55 75a1aab aa6ca85 ffc273f 75a1aab ffc273f 75a1aab ffc273f 6560c55 75a1aab 60c475d ffc273f b8c63a2 75a1aab b8c63a2 ffc273f a6e4f9f ffc273f 8652f53 75a1aab ffc273f 75a1aab a6e4f9f ffc273f aa6ca85 a6e4f9f 75a1aab 3d63694 ffc273f aa6ca85 ffc273f 8652f53 75a1aab aa6ca85 ffc273f cf40b67 aa6ca85 75a1aab aa6ca85 8652f53 3d63694 75a1aab ffc273f 75a1aab ffc273f 75a1aab 8652f53 aa6ca85 75a1aab a6e4f9f 75a1aab 8652f53 3d63694 75a1aab 8652f53 75a1aab ffc273f 75a1aab ffc273f 75a1aab aa6ca85 75a1aab aa6ca85 ffc273f 75a1aab 3d63694 6560c55 75a1aab ffc273f 3d63694 75a1aab 3d63694 75a1aab 8652f53 aa6ca85 75a1aab aa6ca85 75a1aab aa6ca85 75a1aab aa6ca85 75a1aab aa6ca85 75a1aab a6e4f9f 75a1aab a6e4f9f ffc273f 75a1aab aa6ca85 ffc273f 75a1aab aa6ca85 8652f53 aa6ca85 ffc273f 75a1aab aa6ca85 75a1aab 8652f53 75a1aab 8652f53 75a1aab ffc273f aa6ca85 75a1aab aa6ca85 75a1aab aa6ca85 75a1aab aa6ca85 75a1aab aa6ca85 75a1aab aa6ca85 75a1aab aa6ca85 6560c55 aa6ca85 75a1aab a6e4f9f 75a1aab a6e4f9f ffc273f cf40b67 6560c55 3d63694 8652f53 3d63694 8652f53 3d63694 75a1aab 6560c55 3d63694 75a1aab 3d63694 75a1aab 3d63694 aa6ca85 3d63694 75a1aab 3d63694 75a1aab 8652f53 75a1aab 8652f53 3d63694 8652f53 75a1aab 3d63694 75a1aab cf40b67 aa6ca85 ffc273f 6560c55 75a1aab 3d63694 6560c55 ffc273f 6560c55 ffc273f 75a1aab ffc273f 75a1aab ffc273f 75a1aab cf40b67 aa6ca85 75a1aab 6560c55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
# --- Imports ---
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from duckduckgo_search import DDGS
import time
import torch
from datetime import datetime
import os
import subprocess
import numpy as np
from typing import List, Dict, Tuple, Any, Optional, Union
from functools import lru_cache
# No asyncio needed
import threading
# No ThreadPoolExecutor needed
import warnings
import traceback # For detailed error logging
import re # For text cleaning
import shutil # For checking sudo/file operations
import html # For escaping HTML
import sys # For sys.path manipulation
import spaces # <<<--- IMPORT SPACES FOR THE DECORATOR
# --- Configuration ---
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
MAX_SEARCH_RESULTS = 5
TTS_SAMPLE_RATE = 24000
MAX_TTS_CHARS = 1000
MAX_NEW_TOKENS = 300
TEMPERATURE = 0.7
TOP_P = 0.95
KOKORO_PATH = 'Kokoro-82M'
LLM_GPU_DURATION = 120 # Seconds
TTS_GPU_DURATION = 60 # Seconds
# --- Initialization ---
warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
warnings.filterwarnings("ignore", message="Backend 'inductor' is not available.")
# --- LLM Initialization ---
llm_model: Optional[AutoModelForCausalLM] = None
llm_tokenizer: Optional[AutoTokenizer] = None
try:
print("[LLM Init] Initializing Language Model...")
llm_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
llm_tokenizer.pad_token = llm_tokenizer.eos_token
llm_device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if llm_device == "cuda" else torch.float32
device_map = "auto"
print(f"[LLM Init] Preparing model load (target device via ZeroGPU: cuda, dtype={torch_dtype})")
llm_model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME, device_map=device_map, low_cpu_mem_usage=True, torch_dtype=torch_dtype,
)
print(f"[LLM Init] LLM loaded configuration successfully.")
llm_model.eval()
except Exception as e:
print(f"[LLM Init] FATAL: Error initializing LLM model: {str(e)}")
print(traceback.format_exc()); llm_model = None; llm_tokenizer = None
print("[LLM Init] LLM features will be unavailable.")
# --- TTS Initialization ---
VOICE_CHOICES = { 'πΊπΈ Female (Default)': 'af', 'πΊπΈ Bella': 'af_bella', 'πΊπΈ Sarah': 'af_sarah', 'πΊπΈ Nicole': 'af_nicole' }
TTS_ENABLED = False
tts_model: Optional[Any] = None
voicepacks: Dict[str, Any] = {}
tts_device = "cpu"
def _run_subprocess(cmd: List[str], check: bool = True, cwd: Optional[str] = None, timeout: int = 300) -> subprocess.CompletedProcess:
"""Runs a subprocess command, captures output, and handles errors."""
print(f"Running command: {' '.join(cmd)}")
try:
result = subprocess.run(cmd, check=check, capture_output=True, text=True, cwd=cwd, timeout=timeout)
# Print output more selectively
if not check or result.returncode != 0:
if result.stdout: print(f" Stdout: {result.stdout.strip()}")
if result.stderr: print(f" Stderr: {result.stderr.strip()}")
elif result.returncode == 0 and ('clone' in cmd or 'pull' in cmd or 'install' in cmd):
print(f" Command successful.")
return result
except FileNotFoundError: print(f" Error: Command not found - {cmd[0]}"); raise
except subprocess.TimeoutExpired: print(f" Error: Command timed out - {' '.join(cmd)}"); raise
except subprocess.CalledProcessError as e:
print(f" Error running command: {' '.join(e.cmd)} (Code: {e.returncode})")
if e.stdout: print(f" Stdout: {e.stdout.strip()}")
if e.stderr: print(f" Stderr: {e.stderr.strip()}")
raise
def setup_tts_task():
"""Initializes Kokoro TTS model and dependencies (runs in background)."""
global TTS_ENABLED, tts_model, voicepacks, tts_device
print("[TTS Setup] Starting background initialization...")
tts_device_target = "cuda" # Target device when GPU is attached by decorator
print(f"[TTS Setup] Target device for TTS model (via @spaces.GPU): {tts_device_target}")
can_sudo = shutil.which('sudo') is not None
apt_cmd_prefix = ['sudo'] if can_sudo else []
absolute_kokoro_path = os.path.abspath(KOKORO_PATH)
try:
# 1. Clone/Update Repo
if not os.path.exists(absolute_kokoro_path):
print(f"[TTS Setup] Cloning repository to {absolute_kokoro_path}...")
try: _run_subprocess(['git', 'lfs', 'install', '--system', '--skip-repo'])
except Exception as lfs_err: print(f"[TTS Setup] Warning: git lfs install failed: {lfs_err}")
_run_subprocess(['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M', absolute_kokoro_path])
try: _run_subprocess(['git', 'lfs', 'pull'], cwd=absolute_kokoro_path)
except Exception as lfs_pull_err: print(f"[TTS Setup] Warning: git lfs pull failed: {lfs_pull_err}")
else: print(f"[TTS Setup] Directory {absolute_kokoro_path} already exists.")
# 2. Install espeak
print("[TTS Setup] Checking/Installing espeak...")
try:
_run_subprocess(apt_cmd_prefix + ['apt-get', 'update', '-qq'])
_run_subprocess(apt_cmd_prefix + ['apt-get', 'install', '-y', '-qq', 'espeak-ng'])
print("[TTS Setup] espeak-ng installed or already present.")
except Exception:
print("[TTS Setup] espeak-ng installation failed, trying espeak...")
try: _run_subprocess(apt_cmd_prefix + ['apt-get', 'install', '-y', '-qq', 'espeak']); print("[TTS Setup] espeak installed or already present.")
except Exception as espeak_err: print(f"[TTS Setup] ERROR: Failed to install espeak: {espeak_err}. TTS disabled."); return
# 3. Load Kokoro Model and Voices
sys_path_updated = False
if os.path.exists(absolute_kokoro_path):
print(f"[TTS Setup] Checking contents of: {absolute_kokoro_path}");
try: print(f"[TTS Setup] Contents: {os.listdir(absolute_kokoro_path)}")
except OSError as list_err: print(f"[TTS Setup] Warning: Could not list directory contents: {list_err}")
if absolute_kokoro_path not in sys.path: sys.path.insert(0, absolute_kokoro_path); sys_path_updated = True; print(f"[TTS Setup] Temporarily added {absolute_kokoro_path} to sys.path.")
try:
print("[TTS Setup] Attempting to import Kokoro modules...")
from models import build_model
from kokoro import generate as generate_tts_internal
print("[TTS Setup] Kokoro modules imported successfully.")
globals()['build_model'] = build_model; globals()['generate_tts_internal'] = generate_tts_internal
model_file = os.path.join(absolute_kokoro_path, 'kokoro-v0_19.pth')
if not os.path.exists(model_file): print(f"[TTS Setup] ERROR: Model file {model_file} not found. TTS disabled."); return
print(f"[TTS Setup] Loading TTS model config from {model_file} (to CPU first)...")
tts_model = build_model(model_file, 'cpu'); tts_model.eval(); print("[TTS Setup] TTS model structure loaded (CPU).")
loaded_voices = 0
for voice_name, voice_id in VOICE_CHOICES.items():
vp_path = os.path.join(absolute_kokoro_path, 'voices', f'{voice_id}.pt')
if os.path.exists(vp_path):
try: voicepacks[voice_id] = torch.load(vp_path, map_location='cpu'); loaded_voices += 1; print(f"[TTS Setup] Loaded voice: {voice_id} ({voice_name}) to CPU")
except Exception as e: print(f"[TTS Setup] Warning: Failed to load voice {voice_id}: {str(e)}")
else: print(f"[TTS Setup] Info: Voice file {vp_path} not found.")
if loaded_voices == 0: print("[TTS Setup] ERROR: No voicepacks loaded. TTS disabled."); tts_model = None; return
TTS_ENABLED = True; print(f"[TTS Setup] Initialization successful. {loaded_voices} voices loaded. TTS Enabled: {TTS_ENABLED}")
except ImportError as ie: print(f"[TTS Setup] ERROR: Failed to import Kokoro modules: {ie}."); print(traceback.format_exc())
except Exception as load_err: print(f"[TTS Setup] ERROR: Exception during TTS loading: {load_err}. TTS disabled."); print(traceback.format_exc())
finally:
if sys_path_updated: # Cleanup sys.path
try:
if sys.path[0] == absolute_kokoro_path: sys.path.pop(0)
elif absolute_kokoro_path in sys.path: sys.path.remove(absolute_kokoro_path)
print(f"[TTS Setup] Cleaned up sys.path.")
except Exception as cleanup_err: print(f"[TTS Setup] Warning: Error cleaning sys.path: {cleanup_err}")
else: print(f"[TTS Setup] ERROR: Directory {absolute_kokoro_path} not found. TTS disabled.")
except Exception as e: print(f"[TTS Setup] ERROR: Unexpected error during setup: {str(e)}"); print(traceback.format_exc()); TTS_ENABLED = False; tts_model = None; voicepacks.clear()
print("Starting TTS setup thread...")
tts_setup_thread = threading.Thread(target=setup_tts_task, daemon=True)
tts_setup_thread.start()
# --- Core Logic Functions (Synchronous + @spaces.GPU) ---
@lru_cache(maxsize=128)
def get_web_results_sync(query: str, max_results: int = MAX_SEARCH_RESULTS) -> List[Dict[str, Any]]:
"""Synchronous web search function with caching."""
print(f"[Web Search] Searching (sync): '{query}' (max_results={max_results})")
try:
with DDGS() as ddgs:
results = list(ddgs.text(query, max_results=max_results, safesearch='moderate', timelimit='y'))
print(f"[Web Search] Found {len(results)} results.")
formatted = [{"id": i + 1, "title": res.get("title", "No Title"), "snippet": res.get("body", "No Snippet"), "url": res.get("href", "#")} for i, res in enumerate(results)]
return formatted
except Exception as e: print(f"[Web Search] Error: {e}"); return []
def format_llm_prompt(query: str, context: List[Dict[str, Any]]) -> str:
"""Formats the prompt for the LLM."""
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
context_str = "\n\n".join([f"[{res['id']}] {html.escape(res['title'])}\n{html.escape(res['snippet'])}" for res in context]) if context else "No relevant web context found."
return f"""SYSTEM: You are a helpful AI assistant. Answer the user's query based *only* on the provided web search context. Cite sources using bracket notation like [1], [2]. If the context is insufficient, state that clearly. Use markdown for formatting. Do not add external information. Current Time: {current_time}\n\nCONTEXT:\n---\n{context_str}\n---\n\nUSER: {html.escape(query)}\n\nASSISTANT:"""
def format_sources_html(web_results: List[Dict[str, Any]]) -> str:
"""Formats search results into HTML for display."""
if not web_results: return "<div class='no-sources'>No sources found.</div>"
items_html = ""
for res in web_results:
title_safe = html.escape(res.get("title", "Source")); snippet_safe = html.escape(res.get("snippet", "")[:150] + ("..." if len(res.get("snippet", "")) > 150 else "")); url = html.escape(res.get("url", "#"))
items_html += f"""<div class='source-item'><div class='source-number'>[{res['id']}]</div><div class='source-content'><a href="{url}" target="_blank" class='source-title' title="{url}">{title_safe}</a><div class='source-snippet'>{snippet_safe}</div></div></div>"""
return f"<div class='sources-container'>{items_html}</div>"
@spaces.GPU(duration=LLM_GPU_DURATION)
def generate_llm_answer(prompt: str) -> str:
"""Generates answer using the LLM (Synchronous, GPU-decorated)."""
if not llm_model or not llm_tokenizer: print("[LLM Generate] LLM unavailable."); return "Error: Language Model unavailable."
print(f"[LLM Generate] Requesting generation (sync, GPU) (prompt length {len(prompt)})...")
start_time = time.time()
try:
# ZeroGPU context should place model on GPU here
current_device = next(llm_model.parameters()).device; print(f"[LLM Generate] Model device: {current_device}")
inputs = llm_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=1024, return_attention_mask=True).to(current_device)
with torch.inference_mode(), torch.cuda.amp.autocast(enabled=(llm_model.dtype == torch.float16)):
outputs = llm_model.generate(inputs.input_ids, attention_mask=inputs.attention_mask, max_new_tokens=MAX_NEW_TOKENS, temperature=TEMPERATURE, top_p=TOP_P, pad_token_id=llm_tokenizer.eos_token_id, eos_token_id=llm_tokenizer.eos_token_id, do_sample=True, num_return_sequences=1)
output_ids = outputs[0][inputs.input_ids.shape[1]:]; answer_part = llm_tokenizer.decode(output_ids, skip_special_tokens=True).strip()
if not answer_part: answer_part = "*Model generated empty response.*"
end_time = time.time(); print(f"[LLM Generate] Complete in {end_time - start_time:.2f}s.")
return answer_part
except Exception as e: print(f"[LLM Generate] Error: {e}"); print(traceback.format_exc()); return f"Error generating answer."
@spaces.GPU(duration=TTS_GPU_DURATION)
def generate_tts_speech(text: str, voice_id: str = 'af') -> Optional[Tuple[int, np.ndarray]]:
"""Generates speech using TTS model (Synchronous, GPU-decorated) with debugging."""
# 1. Check initial state
if not TTS_ENABLED: print("[TTS Generate] Skipping: TTS is not enabled."); return None
if not tts_model: print("[TTS Generate] Skipping: TTS model object is None."); return None
if 'generate_tts_internal' not in globals(): print("[TTS Generate] Skipping: generate_tts_internal not found."); return None
print(f"[TTS Generate] Requesting speech (sync, GPU) for text (len {len(text)}), req voice '{voice_id}'...")
start_time = time.time()
# 2. Check input text validity
if not text or not text.strip() or text.startswith("Error:") or text.startswith("*Model"):
print(f"[TTS Generate] Skipping: Invalid/empty text: '{text[:100]}...'")
return None
try:
# 3. Verify and select voice pack
actual_voice_id = voice_id
if voice_id not in voicepacks:
print(f"[TTS Generate] Warn: Voice '{voice_id}' missing. Trying 'af'. Available: {list(voicepacks.keys())}")
actual_voice_id = 'af'
if 'af' not in voicepacks: print("[TTS Generate] Error: Default voice 'af' missing."); return None
print(f"[TTS Generate] Using voice_id: {actual_voice_id}")
voice_pack_data = voicepacks[actual_voice_id]
if voice_pack_data is None: print(f"[TTS Generate] Error: Voice pack data for '{actual_voice_id}' is None."); return None
# 4. Clean text
clean_text = re.sub(r'\[\d+\](\[\d+\])*', '', text); clean_text = re.sub(r'```.*?```', '', clean_text, flags=re.DOTALL); clean_text = re.sub(r'`[^`]*`', '', clean_text); clean_text = re.sub(r'^\s*[\*->]\s*', '', clean_text, flags=re.MULTILINE); clean_text = re.sub(r'[\*#_]', '', clean_text); clean_text = html.unescape(clean_text); clean_text = ' '.join(clean_text.split())
print(f"[TTS Generate] Cleaned text (first 100): '{clean_text[:100]}...'")
if not clean_text: print("[TTS Generate] Skipping: Text empty after cleaning."); return None
# 5. Truncate text
if len(clean_text) > MAX_TTS_CHARS:
print(f"[TTS Generate] Truncating cleaned text from {len(clean_text)} to {MAX_TTS_CHARS} chars.")
clean_text = clean_text[:MAX_TTS_CHARS]; last_punct = max(clean_text.rfind(p) for p in '.?!; ');
if last_punct != -1: clean_text = clean_text[:last_punct+1]
clean_text += "..."
# 6. Prepare for GPU execution
current_device = 'cuda' # Assume GPU attached by decorator
moved_voice_pack = None
gen_func = globals()['generate_tts_internal']
print(f"[TTS Generate] Preparing for generation on device '{current_device}'...")
try:
# 7. Move model and data to GPU
print(f" TTS model device before move: {tts_model.device if hasattr(tts_model, 'device') else 'N/A'}")
tts_model.to(current_device)
print(f" TTS model device after move: {tts_model.device}")
print(" Moving voice pack data to CUDA...")
if isinstance(voice_pack_data, dict): moved_voice_pack = {k: v.to(current_device) if isinstance(v, torch.Tensor) else v for k, v in voice_pack_data.items()}
elif isinstance(voice_pack_data, torch.Tensor): moved_voice_pack = voice_pack_data.to(current_device)
else: moved_voice_pack = voice_pack_data
print(" Voice pack data moved (or assumed not tensor).")
# 8. Call the internal TTS function
print(f"[TTS Generate] Calling Kokoro generate function (language code 'eng')...")
# --- Using language code 'eng' ---
audio_data, sr = gen_func(tts_model, clean_text, moved_voice_pack, 'eng')
print(f"[TTS Generate] Kokoro function returned. Type: {type(audio_data)}, Sample Rate: {sr}")
except Exception as kokoro_err:
print(f"[TTS Generate] **** ERROR during Kokoro generate call ****: {kokoro_err}")
print(traceback.format_exc()); return None
finally:
# Move model back to CPU
try:
print("[TTS Generate] Moving TTS model back to CPU...")
if tts_model is not None: tts_model.to('cpu')
except Exception as move_back_err: print(f"[TTS Generate] Warn: Could not move TTS model back to CPU: {move_back_err}")
# 9. Process output audio data
if audio_data is None: print("[TTS Generate] Kokoro function returned None."); return None
print(f"[TTS Generate] Processing audio output. Type: {type(audio_data)}")
if isinstance(audio_data, torch.Tensor):
print(f" Original Tensor shape: {audio_data.shape}, dtype: {audio_data.dtype}, device: {audio_data.device}"); audio_np = audio_data.detach().cpu().numpy()
elif isinstance(audio_data, np.ndarray):
print(f" Original Numpy shape: {audio_data.shape}, dtype: {audio_data.dtype}"); audio_np = audio_data
else: print("[TTS Generate] Error: Unexpected audio data type from Kokoro."); return None
audio_np = audio_np.flatten().astype(np.float32)
print(f"[TTS Generate] Final Numpy Array shape: {audio_np.shape}, dtype: {audio_np.dtype}, min: {np.min(audio_np):.2f}, max: {np.max(audio_np):.2f}")
if np.max(np.abs(audio_np)) < 1e-4: print("[TTS Generate] Warning: Generated audio appears silent.")
end_time = time.time(); print(f"[TTS Generate] Audio generated successfully in {end_time - start_time:.2f}s.")
actual_sr = sr if isinstance(sr, int) and sr > 0 else TTS_SAMPLE_RATE
print(f"[TTS Generate] Returning audio tuple with SR={actual_sr}.")
return (actual_sr, audio_np)
except Exception as e:
print(f"[TTS Generate] **** UNEXPECTED ERROR in generate_tts_speech ****: {str(e)}")
print(traceback.format_exc()); return None
def get_voice_id_from_display(voice_display_name: str) -> str:
"""Maps display name to voice ID."""
return VOICE_CHOICES.get(voice_display_name, 'af')
# --- Gradio Interaction Logic (Synchronous) ---
ChatHistoryType = List[Dict[str, Optional[str]]]
def handle_interaction(
query: str,
history: ChatHistoryType,
selected_voice_display_name: str
) -> Tuple[ChatHistoryType, str, str, Optional[Tuple[int, np.ndarray]], Any]:
"""Synchronous function to handle user queries for ZeroGPU."""
print(f"\n--- Handling Query (Sync) ---"); query = query.strip()
print(f"Query: '{query}', Voice: '{selected_voice_display_name}'")
if not query: print("Empty query."); return history, "*Please enter query.*", "<div class='no-sources'>Enter query.</div>", None, gr.Button(value="Search", interactive=True)
current_history: ChatHistoryType = history + [{"role": "user", "content": query}, {"role": "assistant", "content": "*Processing...*"}]
status_update = "*Processing... Please wait.*"; sources_html = "<div class='searching'><span>Searching...</span></div>"; audio_data = None
button_update = gr.Button(value="Processing...", interactive=False); final_answer = ""
try:
print("[Handler] Web search..."); start_t = time.time()
web_results = get_web_results_sync(query); print(f"[Handler] Web search took {time.time()-start_t:.2f}s")
sources_html = format_sources_html(web_results)
print("[Handler] LLM generation..."); start_t = time.time()
llm_prompt = format_llm_prompt(query, web_results)
final_answer = generate_llm_answer(llm_prompt); print(f"[Handler] LLM generation took {time.time()-start_t:.2f}s")
status_update = final_answer
tts_status_message = ""
print(f"[Handler] TTS Check: Enabled={TTS_ENABLED}, Model?={tts_model is not None}")
if TTS_ENABLED and tts_model is not None and not final_answer.startswith("Error"):
print("[Handler] TTS generation..."); start_t = time.time()
voice_id = get_voice_id_from_display(selected_voice_display_name)
audio_data = generate_tts_speech(final_answer, voice_id) # Call decorated function
print(f"[Handler] TTS generation took {time.time()-start_t:.2f}s")
print(f"[Handler] Received audio_data: type={type(audio_data)}, shape={(audio_data[1].shape if audio_data else 'N/A')}")
if audio_data is None: tts_status_message = "\n\n*(Audio generation failed)*"
elif not TTS_ENABLED or tts_model is None:
tts_status_message = "\n\n*(TTS unavailable)*" if not tts_setup_thread.is_alive() else "\n\n*(TTS initializing...)*"
else: tts_status_message = "\n\n*(Audio skipped due to answer error)*"
final_answer_with_status = final_answer + tts_status_message
status_update = final_answer_with_status
current_history[-1]["content"] = final_answer_with_status # Update final history item
button_update = gr.Button(value="Search", interactive=True)
print("--- Query Handling Complete (Sync) ---")
except Exception as e:
print(f"[Handler] Error: {e}"); print(traceback.format_exc())
error_message = f"*Error: {e}*"; current_history[-1]["content"] = error_message
status_update = error_message; sources_html = "<div class='error'>Request failed.</div>"; audio_data = None
button_update = gr.Button(value="Search", interactive=True)
print(f"[Handler] Returning: hist_len={len(current_history)}, status_len={len(status_update)}, sources_len={len(sources_html)}, audio?={audio_data is not None}, button_interact={button_update.interactive}")
return current_history, status_update, sources_html, audio_data, button_update
# --- Gradio UI Definition ---
css = """
/* ... [Your existing refined CSS] ... */
.gradio-container { max-width: 1200px !important; background-color: #f7f7f8 !important; }
#header { text-align: center; margin-bottom: 2rem; padding: 2rem 0; background: linear-gradient(135deg, #1a1b1e, #2d2e32); border-radius: 12px; color: white; box-shadow: 0 8px 32px rgba(0,0,0,0.2); }
#header h1 { color: white; font-size: 2.5rem; margin-bottom: 0.5rem; text-shadow: 0 2px 4px rgba(0,0,0,0.3); }
#header h3 { color: #a8a9ab; }
.search-container { background: #ffffff; border: 1px solid #e0e0e0; border-radius: 12px; box-shadow: 0 4px 16px rgba(0,0,0,0.05); padding: 1.5rem; margin-bottom: 1.5rem; }
.search-box { padding: 0; margin-bottom: 1rem; display: flex; align-items: center; }
.search-box .gradio-textbox { border-radius: 8px 0 0 8px !important; height: 44px !important; flex-grow: 1; }
.search-box .gradio-dropdown { border-radius: 0 !important; margin-left: -1px; margin-right: -1px; height: 44px !important; width: 180px; flex-shrink: 0; }
.search-box .gradio-button { border-radius: 0 8px 8px 0 !important; height: 44px !important; flex-shrink: 0; }
.search-box input[type="text"] { background: #f7f7f8 !important; border: 1px solid #d1d5db !important; color: #1f2937 !important; transition: all 0.3s ease; height: 100% !important; padding: 0 12px !important;}
.search-box input[type="text"]:focus { border-color: #2563eb !important; box-shadow: 0 0 0 2px rgba(37, 99, 235, 0.2) !important; background: white !important; z-index: 1; }
.search-box input[type="text"]::placeholder { color: #9ca3af !important; }
.search-box button { background: #2563eb !important; border: none !important; color: white !important; box-shadow: 0 1px 2px rgba(0,0,0,0.05) !important; transition: all 0.3s ease !important; height: 100% !important; }
.search-box button:hover { background: #1d4ed8 !important; }
.search-box button:disabled { background: #9ca3af !important; cursor: not-allowed; }
.results-container { background: transparent; padding: 0; margin-top: 1.5rem; }
.answer-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1rem; color: #1f2937; margin-bottom: 0.5rem; box-shadow: 0 2px 8px rgba(0,0,0,0.05); min-height: 50px;}
.answer-box p { color: #374151; line-height: 1.7; margin:0;}
.answer-box code { background: #f3f4f6; border-radius: 4px; padding: 2px 4px; color: #4b5563; font-size: 0.9em; }
.sources-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1.5rem; }
.sources-box h3 { margin-top: 0; margin-bottom: 1rem; color: #111827; font-size: 1.2rem; }
.sources-container { margin-top: 0; }
.source-item { display: flex; padding: 10px 0; margin: 0; border-bottom: 1px solid #f3f4f6; }
.source-item:last-child { border-bottom: none; }
.source-number { font-weight: bold; margin-right: 12px; color: #6b7280; width: 20px; text-align: right; flex-shrink: 0;}
.source-content { flex: 1; min-width: 0;}
.source-title { color: #2563eb; font-weight: 500; text-decoration: none; display: block; margin-bottom: 4px; font-size: 0.95em; white-space: nowrap; overflow: hidden; text-overflow: ellipsis;}
.source-title:hover { color: #1d4ed8; text-decoration: underline; }
.source-snippet { color: #4b5563; font-size: 0.9em; line-height: 1.5; }
.chat-history { max-height: 500px; overflow-y: auto; background: #f9fafb; border: 1px solid #e5e7eb; border-radius: 8px; scrollbar-width: thin; scrollbar-color: #d1d5db #f9fafb; }
.chat-history > div { padding: 1rem; }
.chat-history::-webkit-scrollbar { width: 6px; }
.chat-history::-webkit-scrollbar-track { background: #f9fafb; }
.chat-history::-webkit-scrollbar-thumb { background-color: #d1d5db; border-radius: 20px; }
.examples-container { background: #f9fafb; border-radius: 8px; padding: 1rem; margin-top: 1rem; border: 1px solid #e5e7eb; }
.examples-container button { background: white !important; border: 1px solid #d1d5db !important; color: #374151 !important; margin: 4px !important; font-size: 0.9em !important; padding: 6px 12px !important; border-radius: 4px !important; cursor: pointer;}
.examples-container button:hover { background: #f3f4f6 !important; border-color: #adb5bd !important; }
.markdown-content { color: #374151 !important; font-size: 1rem; line-height: 1.7; }
/* ... other markdown styles ... */
.voice-selector { margin: 0; padding: 0; height: 100%; }
.voice-selector div[data-testid="dropdown"] { height: 100% !important; border-radius: 0 !important;}
.voice-selector select { background: white !important; color: #374151 !important; border: 1px solid #d1d5db !important; border-left: none !important; border-right: none !important; border-radius: 0 !important; height: 100% !important; padding: 0 10px !important; appearance: none !important; -webkit-appearance: none !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%236b7280' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important; background-position: right 0.5rem center !important; background-repeat: no-repeat !important; background-size: 1.5em 1.5em !important; padding-right: 2.5rem !important; }
.voice-selector select:focus { border-color: #2563eb !important; box-shadow: none !important; z-index: 1; position: relative;}
.audio-player { margin-top: 1rem; background: #f9fafb !important; border-radius: 8px !important; padding: 0.5rem !important; border: 1px solid #e5e7eb;}
.audio-player audio { width: 100% !important; }
.searching, .error { padding: 1rem; border-radius: 8px; text-align: center; margin: 1rem 0; border: 1px dashed; }
.searching { background: #eff6ff; color: #3b82f6; border-color: #bfdbfe; }
.error { background: #fef2f2; color: #ef4444; border-color: #fecaca; }
.no-sources { padding: 1rem; text-align: center; color: #6b7280; background: #f9fafb; border-radius: 8px; border: 1px solid #e5e7eb;}
@keyframes pulse { 0% { opacity: 0.7; } 50% { opacity: 1; } 100% { opacity: 0.7; } }
.searching span { animation: pulse 1.5s infinite ease-in-out; display: inline-block; }
/* Dark Mode Styles (optional) */
.dark .gradio-container { background-color: #111827 !important; }
/* ... other dark mode rules ... */
"""
with gr.Blocks(title="AI Search Assistant (ZeroGPU Sync)", css=css, theme=gr.themes.Default(primary_hue="blue")) as demo:
chat_history_state = gr.State([])
with gr.Column():
with gr.Column(elem_id="header"): gr.Markdown("# π AI Search Assistant (ZeroGPU)\n### (UI blocks during processing)")
with gr.Column(elem_classes="search-container"):
with gr.Row(elem_classes="search-box"):
search_input = gr.Textbox(label="", placeholder="Ask anything...", scale=5, container=False)
voice_select = gr.Dropdown(choices=list(VOICE_CHOICES.keys()), value=list(VOICE_CHOICES.keys())[0], label="", scale=1, min_width=180, container=False, elem_classes="voice-selector")
search_btn = gr.Button("Search", variant="primary", scale=0, min_width=100)
with gr.Row(elem_classes="results-container"):
with gr.Column(scale=3):
chatbot_display = gr.Chatbot(label="Conversation", bubble_full_width=True, height=500, elem_classes="chat-history", type="messages", show_label=False, avatar_images=(None, os.path.join(KOKORO_PATH, "icon.png") if os.path.exists(os.path.join(KOKORO_PATH, "icon.png")) else "https://huggingface.co/spaces/gradio/chatbot-streaming/resolve/main/avatar.png"))
answer_status_output = gr.Markdown(value="*Enter query to start.*", elem_classes="answer-box markdown-content") # Shows final text
audio_player = gr.Audio(label="Voice Response", type="numpy", autoplay=False, show_label=False, elem_classes="audio-player")
with gr.Column(scale=2):
with gr.Column(elem_classes="sources-box"): gr.Markdown("### Sources"); sources_output_html = gr.HTML(value="<div class='no-sources'>Sources appear here.</div>")
with gr.Row(elem_classes="examples-container"): gr.Examples(examples=["Latest AI news", "Explain LLMs", "Flu symptoms/prevention", "Python vs JS", "Paris Agreement"], inputs=search_input, label="Try examples:")
event_inputs = [search_input, chat_history_state, voice_select]
event_outputs = [ chatbot_display, answer_status_output, sources_output_html, audio_player, search_btn ]
search_btn.click(fn=handle_interaction, inputs=event_inputs, outputs=event_outputs)
search_input.submit(fn=handle_interaction, inputs=event_inputs, outputs=event_outputs)
if __name__ == "__main__":
print("Starting Gradio application (Synchronous for ZeroGPU)...")
time.sleep(1) # Wait for TTS setup thread
demo.queue(max_size=20).launch(debug=True, share=True)
print("Gradio application stopped.") |