|
"""Object detection demo with MobileNet SSD.
|
|
This model and code are based on
|
|
https://github.com/robmarkcole/object-detection-app
|
|
"""
|
|
import logging
|
|
import queue
|
|
from pathlib import Path
|
|
from typing import List, NamedTuple
|
|
|
|
import av
|
|
import cv2
|
|
import numpy as np
|
|
import streamlit as st
|
|
from streamlit_webrtc import WebRtcMode, webrtc_streamer
|
|
|
|
from sample_utils.download import download_file
|
|
from sample_utils.turn import get_ice_servers
|
|
|
|
HERE = Path(__file__).parent
|
|
ROOT = HERE.parent
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
MODEL_URL = "https://github.com/robmarkcole/object-detection-app/raw/master/model/MobileNetSSD_deploy.caffemodel"
|
|
MODEL_LOCAL_PATH = ROOT / "./models/MobileNetSSD_deploy.caffemodel"
|
|
PROTOTXT_URL = "https://github.com/robmarkcole/object-detection-app/raw/master/model/MobileNetSSD_deploy.prototxt.txt"
|
|
PROTOTXT_LOCAL_PATH = ROOT / "./models/MobileNetSSD_deploy.prototxt.txt"
|
|
|
|
CLASSES = [
|
|
"background",
|
|
"aeroplane",
|
|
"bicycle",
|
|
"bird",
|
|
"boat",
|
|
"bottle",
|
|
"bus",
|
|
"car",
|
|
"cat",
|
|
"chair",
|
|
"cow",
|
|
"diningtable",
|
|
"dog",
|
|
"horse",
|
|
"motorbike",
|
|
"person",
|
|
"pottedplant",
|
|
"sheep",
|
|
"sofa",
|
|
"train",
|
|
"tvmonitor",
|
|
]
|
|
|
|
|
|
class Detection(NamedTuple):
|
|
class_id: int
|
|
label: str
|
|
score: float
|
|
box: np.ndarray
|
|
|
|
|
|
@st.cache_resource
|
|
def generate_label_colors():
|
|
return np.random.uniform(0, 255, size=(len(CLASSES), 3))
|
|
|
|
|
|
COLORS = generate_label_colors()
|
|
|
|
download_file(MODEL_URL, MODEL_LOCAL_PATH, expected_size=23147564)
|
|
download_file(PROTOTXT_URL, PROTOTXT_LOCAL_PATH, expected_size=29353)
|
|
|
|
|
|
|
|
cache_key = "object_detection_dnn"
|
|
if cache_key in st.session_state:
|
|
net = st.session_state[cache_key]
|
|
else:
|
|
net = cv2.dnn.readNetFromCaffe(str(PROTOTXT_LOCAL_PATH), str(MODEL_LOCAL_PATH))
|
|
st.session_state[cache_key] = net
|
|
|
|
score_threshold = st.slider("Score threshold", 0.0, 1.0, 0.5, 0.05)
|
|
|
|
|
|
|
|
|
|
|
|
result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
|
|
|
|
|
|
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
|
|
image = frame.to_ndarray(format="bgr24")
|
|
|
|
|
|
blob = cv2.dnn.blobFromImage(
|
|
cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5
|
|
)
|
|
net.setInput(blob)
|
|
output = net.forward()
|
|
|
|
h, w = image.shape[:2]
|
|
|
|
|
|
output = output.squeeze()
|
|
output = output[output[:, 2] >= score_threshold]
|
|
detections = [
|
|
Detection(
|
|
class_id=int(detection[1]),
|
|
label=CLASSES[int(detection[1])],
|
|
score=float(detection[2]),
|
|
box=(detection[3:7] * np.array([w, h, w, h])),
|
|
)
|
|
for detection in output
|
|
]
|
|
|
|
|
|
for detection in detections:
|
|
caption = f"{detection.label}: {round(detection.score * 100, 2)}%"
|
|
color = COLORS[detection.class_id]
|
|
xmin, ymin, xmax, ymax = detection.box.astype("int")
|
|
|
|
cv2.rectangle(image, (xmin, ymin), (xmax, ymax), color, 2)
|
|
cv2.putText(
|
|
image,
|
|
caption,
|
|
(xmin, ymin - 15 if ymin - 15 > 15 else ymin + 15),
|
|
cv2.FONT_HERSHEY_SIMPLEX,
|
|
0.5,
|
|
color,
|
|
2,
|
|
)
|
|
|
|
result_queue.put(detections)
|
|
|
|
return av.VideoFrame.from_ndarray(image, format="bgr24")
|
|
|
|
|
|
webrtc_ctx = webrtc_streamer(
|
|
key="object-detection",
|
|
mode=WebRtcMode.SENDRECV,
|
|
rtc_configuration={"iceServers": get_ice_servers()},
|
|
video_frame_callback=video_frame_callback,
|
|
media_stream_constraints={"video": True, "audio": False},
|
|
async_processing=True,
|
|
)
|
|
|
|
if st.checkbox("Show the detected labels", value=True):
|
|
if webrtc_ctx.state.playing:
|
|
labels_placeholder = st.empty()
|
|
|
|
|
|
|
|
|
|
|
|
while True:
|
|
result = result_queue.get()
|
|
labels_placeholder.table(result)
|
|
|
|
st.markdown(
|
|
"This demo uses a model and code from "
|
|
"https://github.com/robmarkcole/object-detection-app. "
|
|
"Many thanks to the project."
|
|
) |