Upload 20 files
Browse files- backbone/base.py +29 -0
- backbone/resnet101.py +37 -0
- backbone/resnet18.py +37 -0
- backbone/resnet50.py +37 -0
- config/config.py +37 -0
- config/eval_config.py +20 -0
- config/train_config.py +71 -0
- dataset/base.py +155 -0
- dataset/coco2017.py +212 -0
- dataset/coco2017_animal.py +205 -0
- dataset/coco2017_car.py +201 -0
- dataset/coco2017_person.py +201 -0
- dataset/voc2007.py +168 -0
- dataset/voc2007_cat_dog.py +171 -0
- extension/functional.py +10 -0
- extension/lr_scheduler.py +23 -0
- models/MobileNetSSD_deploy.caffemodel +3 -0
- models/MobileNetSSD_deploy.prototxt.txt +1912 -0
- roi/pooler.py +45 -0
- rpn/region_proposal_network.py +169 -0
backbone/base.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple, Type
|
2 |
+
|
3 |
+
from torch import nn
|
4 |
+
|
5 |
+
|
6 |
+
class Base(object):
|
7 |
+
|
8 |
+
OPTIONS = ['resnet18', 'resnet50', 'resnet101']
|
9 |
+
|
10 |
+
@staticmethod
|
11 |
+
def from_name(name: str) -> Type['Base']:
|
12 |
+
if name == 'resnet18':
|
13 |
+
from backbone.resnet18 import ResNet18
|
14 |
+
return ResNet18
|
15 |
+
elif name == 'resnet50':
|
16 |
+
from backbone.resnet50 import ResNet50
|
17 |
+
return ResNet50
|
18 |
+
elif name == 'resnet101':
|
19 |
+
from backbone.resnet101 import ResNet101
|
20 |
+
return ResNet101
|
21 |
+
else:
|
22 |
+
raise ValueError
|
23 |
+
|
24 |
+
def __init__(self, pretrained: bool):
|
25 |
+
super().__init__()
|
26 |
+
self._pretrained = pretrained
|
27 |
+
|
28 |
+
def features(self) -> Tuple[nn.Module, nn.Module, int, int]:
|
29 |
+
raise NotImplementedError
|
backbone/resnet101.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple
|
2 |
+
|
3 |
+
import torchvision
|
4 |
+
from torch import nn
|
5 |
+
|
6 |
+
import backbone.base
|
7 |
+
|
8 |
+
|
9 |
+
class ResNet101(backbone.base.Base):
|
10 |
+
|
11 |
+
def __init__(self, pretrained: bool):
|
12 |
+
super().__init__(pretrained)
|
13 |
+
|
14 |
+
def features(self) -> Tuple[nn.Module, nn.Module, int, int]:
|
15 |
+
resnet101 = torchvision.models.resnet101(pretrained=self._pretrained)
|
16 |
+
|
17 |
+
# list(resnet101.children()) consists of following modules
|
18 |
+
# [0] = Conv2d, [1] = BatchNorm2d, [2] = ReLU,
|
19 |
+
# [3] = MaxPool2d, [4] = Sequential(Bottleneck...),
|
20 |
+
# [5] = Sequential(Bottleneck...),
|
21 |
+
# [6] = Sequential(Bottleneck...),
|
22 |
+
# [7] = Sequential(Bottleneck...),
|
23 |
+
# [8] = AvgPool2d, [9] = Linear
|
24 |
+
children = list(resnet101.children())
|
25 |
+
features = children[:-3]
|
26 |
+
num_features_out = 1024
|
27 |
+
|
28 |
+
hidden = children[-3]
|
29 |
+
num_hidden_out = 2048
|
30 |
+
|
31 |
+
for parameters in [feature.parameters() for i, feature in enumerate(features) if i <= 4]:
|
32 |
+
for parameter in parameters:
|
33 |
+
parameter.requires_grad = False
|
34 |
+
|
35 |
+
features = nn.Sequential(*features)
|
36 |
+
|
37 |
+
return features, hidden, num_features_out, num_hidden_out
|
backbone/resnet18.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple
|
2 |
+
|
3 |
+
import torchvision
|
4 |
+
from torch import nn
|
5 |
+
|
6 |
+
import backbone.base
|
7 |
+
|
8 |
+
|
9 |
+
class ResNet18(backbone.base.Base):
|
10 |
+
|
11 |
+
def __init__(self, pretrained: bool):
|
12 |
+
super().__init__(pretrained)
|
13 |
+
|
14 |
+
def features(self) -> Tuple[nn.Module, nn.Module, int, int]:
|
15 |
+
resnet18 = torchvision.models.resnet18(pretrained=self._pretrained)
|
16 |
+
|
17 |
+
# list(resnet18.children()) consists of following modules
|
18 |
+
# [0] = Conv2d, [1] = BatchNorm2d, [2] = ReLU,
|
19 |
+
# [3] = MaxPool2d, [4] = Sequential(Bottleneck...),
|
20 |
+
# [5] = Sequential(Bottleneck...),
|
21 |
+
# [6] = Sequential(Bottleneck...),
|
22 |
+
# [7] = Sequential(Bottleneck...),
|
23 |
+
# [8] = AvgPool2d, [9] = Linear
|
24 |
+
children = list(resnet18.children())
|
25 |
+
features = children[:-3]
|
26 |
+
num_features_out = 256
|
27 |
+
|
28 |
+
hidden = children[-3]
|
29 |
+
num_hidden_out = 512
|
30 |
+
|
31 |
+
for parameters in [feature.parameters() for i, feature in enumerate(features) if i <= 4]:
|
32 |
+
for parameter in parameters:
|
33 |
+
parameter.requires_grad = False
|
34 |
+
|
35 |
+
features = nn.Sequential(*features)
|
36 |
+
|
37 |
+
return features, hidden, num_features_out, num_hidden_out
|
backbone/resnet50.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple
|
2 |
+
|
3 |
+
import torchvision
|
4 |
+
from torch import nn
|
5 |
+
|
6 |
+
import backbone.base
|
7 |
+
|
8 |
+
|
9 |
+
class ResNet50(backbone.base.Base):
|
10 |
+
|
11 |
+
def __init__(self, pretrained: bool):
|
12 |
+
super().__init__(pretrained)
|
13 |
+
|
14 |
+
def features(self) -> Tuple[nn.Module, nn.Module, int, int]:
|
15 |
+
resnet50 = torchvision.models.resnet50(pretrained=self._pretrained)
|
16 |
+
|
17 |
+
# list(resnet50.children()) consists of following modules
|
18 |
+
# [0] = Conv2d, [1] = BatchNorm2d, [2] = ReLU,
|
19 |
+
# [3] = MaxPool2d, [4] = Sequential(Bottleneck...),
|
20 |
+
# [5] = Sequential(Bottleneck...),
|
21 |
+
# [6] = Sequential(Bottleneck...),
|
22 |
+
# [7] = Sequential(Bottleneck...),
|
23 |
+
# [8] = AvgPool2d, [9] = Linear
|
24 |
+
children = list(resnet50.children())
|
25 |
+
features = children[:-3]
|
26 |
+
num_features_out = 1024
|
27 |
+
|
28 |
+
hidden = children[-3]
|
29 |
+
num_hidden_out = 2048
|
30 |
+
|
31 |
+
for parameters in [feature.parameters() for i, feature in enumerate(features) if i <= 4]:
|
32 |
+
for parameter in parameters:
|
33 |
+
parameter.requires_grad = False
|
34 |
+
|
35 |
+
features = nn.Sequential(*features)
|
36 |
+
|
37 |
+
return features, hidden, num_features_out, num_hidden_out
|
config/config.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import ast
|
2 |
+
from typing import Tuple, List
|
3 |
+
|
4 |
+
from roi.pooler import Pooler
|
5 |
+
|
6 |
+
|
7 |
+
class Config(object):
|
8 |
+
|
9 |
+
IMAGE_MIN_SIDE: float = 600.0
|
10 |
+
IMAGE_MAX_SIDE: float = 1000.0
|
11 |
+
|
12 |
+
ANCHOR_RATIOS: List[Tuple[int, int]] = [(1, 2), (1, 1), (2, 1)]
|
13 |
+
ANCHOR_SIZES: List[int] = [128, 256, 512]
|
14 |
+
POOLER_MODE: Pooler.Mode = Pooler.Mode.POOLING
|
15 |
+
|
16 |
+
@classmethod
|
17 |
+
def describe(cls):
|
18 |
+
text = '\nConfig:\n'
|
19 |
+
attrs = [attr for attr in dir(cls) if not callable(getattr(cls, attr)) and not attr.startswith('__')]
|
20 |
+
text += '\n'.join(['\t{:s} = {:s}'.format(attr, str(getattr(cls, attr))) for attr in attrs]) + '\n'
|
21 |
+
|
22 |
+
return text
|
23 |
+
|
24 |
+
@classmethod
|
25 |
+
def setup(cls, image_min_side: float = None, image_max_side: float = None,
|
26 |
+
anchor_ratios: List[Tuple[int, int]] = None, anchor_sizes: List[int] = None, pooler_mode: str = None):
|
27 |
+
if image_min_side is not None:
|
28 |
+
cls.IMAGE_MIN_SIDE = image_min_side
|
29 |
+
if image_max_side is not None:
|
30 |
+
cls.IMAGE_MAX_SIDE = image_max_side
|
31 |
+
|
32 |
+
if anchor_ratios is not None:
|
33 |
+
cls.ANCHOR_RATIOS = ast.literal_eval(anchor_ratios)
|
34 |
+
if anchor_sizes is not None:
|
35 |
+
cls.ANCHOR_SIZES = ast.literal_eval(anchor_sizes)
|
36 |
+
if pooler_mode is not None:
|
37 |
+
cls.POOLER_MODE = Pooler.Mode(pooler_mode)
|
config/eval_config.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Tuple
|
2 |
+
|
3 |
+
from config.config import Config
|
4 |
+
|
5 |
+
|
6 |
+
class EvalConfig(Config):
|
7 |
+
|
8 |
+
RPN_PRE_NMS_TOP_N: int = 6000
|
9 |
+
RPN_POST_NMS_TOP_N: int = 300
|
10 |
+
|
11 |
+
@classmethod
|
12 |
+
def setup(cls, image_min_side: float = None, image_max_side: float = None,
|
13 |
+
anchor_ratios: List[Tuple[int, int]] = None, anchor_sizes: List[int] = None, pooler_mode: str = None,
|
14 |
+
rpn_pre_nms_top_n: int = None, rpn_post_nms_top_n: int = None):
|
15 |
+
super().setup(image_min_side, image_max_side, anchor_ratios, anchor_sizes, pooler_mode)
|
16 |
+
|
17 |
+
if rpn_pre_nms_top_n is not None:
|
18 |
+
cls.RPN_PRE_NMS_TOP_N = rpn_pre_nms_top_n
|
19 |
+
if rpn_post_nms_top_n is not None:
|
20 |
+
cls.RPN_POST_NMS_TOP_N = rpn_post_nms_top_n
|
config/train_config.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import ast
|
2 |
+
from typing import List, Tuple
|
3 |
+
|
4 |
+
from config.config import Config
|
5 |
+
|
6 |
+
|
7 |
+
class TrainConfig(Config):
|
8 |
+
|
9 |
+
RPN_PRE_NMS_TOP_N: int = 12000
|
10 |
+
RPN_POST_NMS_TOP_N: int = 2000
|
11 |
+
|
12 |
+
ANCHOR_SMOOTH_L1_LOSS_BETA: float = 1.0
|
13 |
+
PROPOSAL_SMOOTH_L1_LOSS_BETA: float = 1.0
|
14 |
+
|
15 |
+
BATCH_SIZE: int = 1
|
16 |
+
LEARNING_RATE: float = 0.001
|
17 |
+
MOMENTUM: float = 0.9
|
18 |
+
WEIGHT_DECAY: float = 0.0005
|
19 |
+
STEP_LR_SIZES: List[int] = [50000, 70000]
|
20 |
+
STEP_LR_GAMMA: float = 0.1
|
21 |
+
WARM_UP_FACTOR: float = 0.3333
|
22 |
+
WARM_UP_NUM_ITERS: int = 500
|
23 |
+
|
24 |
+
NUM_STEPS_TO_DISPLAY: int = 20
|
25 |
+
NUM_STEPS_TO_SNAPSHOT: int = 10000
|
26 |
+
NUM_STEPS_TO_FINISH: int = 90000
|
27 |
+
|
28 |
+
@classmethod
|
29 |
+
def setup(cls, image_min_side: float = None, image_max_side: float = None,
|
30 |
+
anchor_ratios: List[Tuple[int, int]] = None, anchor_sizes: List[int] = None, pooler_mode: str = None,
|
31 |
+
rpn_pre_nms_top_n: int = None, rpn_post_nms_top_n: int = None,
|
32 |
+
anchor_smooth_l1_loss_beta: float = None, proposal_smooth_l1_loss_beta: float = None,
|
33 |
+
batch_size: int = None, learning_rate: float = None, momentum: float = None, weight_decay: float = None,
|
34 |
+
step_lr_sizes: List[int] = None, step_lr_gamma: float = None,
|
35 |
+
warm_up_factor: float = None, warm_up_num_iters: int = None,
|
36 |
+
num_steps_to_display: int = None, num_steps_to_snapshot: int = None, num_steps_to_finish: int = None):
|
37 |
+
super().setup(image_min_side, image_max_side, anchor_ratios, anchor_sizes, pooler_mode)
|
38 |
+
|
39 |
+
if rpn_pre_nms_top_n is not None:
|
40 |
+
cls.RPN_PRE_NMS_TOP_N = rpn_pre_nms_top_n
|
41 |
+
if rpn_post_nms_top_n is not None:
|
42 |
+
cls.RPN_POST_NMS_TOP_N = rpn_post_nms_top_n
|
43 |
+
|
44 |
+
if anchor_smooth_l1_loss_beta is not None:
|
45 |
+
cls.ANCHOR_SMOOTH_L1_LOSS_BETA = anchor_smooth_l1_loss_beta
|
46 |
+
if proposal_smooth_l1_loss_beta is not None:
|
47 |
+
cls.PROPOSAL_SMOOTH_L1_LOSS_BETA = proposal_smooth_l1_loss_beta
|
48 |
+
|
49 |
+
if batch_size is not None:
|
50 |
+
cls.BATCH_SIZE = batch_size
|
51 |
+
if learning_rate is not None:
|
52 |
+
cls.LEARNING_RATE = learning_rate
|
53 |
+
if momentum is not None:
|
54 |
+
cls.MOMENTUM = momentum
|
55 |
+
if weight_decay is not None:
|
56 |
+
cls.WEIGHT_DECAY = weight_decay
|
57 |
+
if step_lr_sizes is not None:
|
58 |
+
cls.STEP_LR_SIZES = ast.literal_eval(step_lr_sizes)
|
59 |
+
if step_lr_gamma is not None:
|
60 |
+
cls.STEP_LR_GAMMA = step_lr_gamma
|
61 |
+
if warm_up_factor is not None:
|
62 |
+
cls.WARM_UP_FACTOR = warm_up_factor
|
63 |
+
if warm_up_num_iters is not None:
|
64 |
+
cls.WARM_UP_NUM_ITERS = warm_up_num_iters
|
65 |
+
|
66 |
+
if num_steps_to_display is not None:
|
67 |
+
cls.NUM_STEPS_TO_DISPLAY = num_steps_to_display
|
68 |
+
if num_steps_to_snapshot is not None:
|
69 |
+
cls.NUM_STEPS_TO_SNAPSHOT = num_steps_to_snapshot
|
70 |
+
if num_steps_to_finish is not None:
|
71 |
+
cls.NUM_STEPS_TO_FINISH = num_steps_to_finish
|
dataset/base.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
from enum import Enum
|
3 |
+
from typing import Tuple, List, Type, Iterator
|
4 |
+
|
5 |
+
import PIL
|
6 |
+
import torch.utils.data.dataset
|
7 |
+
import torch.utils.data.sampler
|
8 |
+
from PIL import Image
|
9 |
+
from torch import Tensor
|
10 |
+
from torch.nn import functional as F
|
11 |
+
from torchvision.transforms import transforms
|
12 |
+
|
13 |
+
|
14 |
+
class Base(torch.utils.data.dataset.Dataset):
|
15 |
+
|
16 |
+
class Mode(Enum):
|
17 |
+
TRAIN = 'train'
|
18 |
+
EVAL = 'eval'
|
19 |
+
|
20 |
+
OPTIONS = ['voc2007', 'coco2017', 'voc2007-cat-dog', 'coco2017-person', 'coco2017-car', 'coco2017-animal']
|
21 |
+
|
22 |
+
@staticmethod
|
23 |
+
def from_name(name: str) -> Type['Base']:
|
24 |
+
if name == 'voc2007':
|
25 |
+
from dataset.voc2007 import VOC2007
|
26 |
+
return VOC2007
|
27 |
+
elif name == 'coco2017':
|
28 |
+
from dataset.coco2017 import COCO2017
|
29 |
+
return COCO2017
|
30 |
+
elif name == 'voc2007-cat-dog':
|
31 |
+
from dataset.voc2007_cat_dog import VOC2007CatDog
|
32 |
+
return VOC2007CatDog
|
33 |
+
elif name == 'coco2017-person':
|
34 |
+
from dataset.coco2017_person import COCO2017Person
|
35 |
+
return COCO2017Person
|
36 |
+
elif name == 'coco2017-car':
|
37 |
+
from dataset.coco2017_car import COCO2017Car
|
38 |
+
return COCO2017Car
|
39 |
+
elif name == 'coco2017-animal':
|
40 |
+
from dataset.coco2017_animal import COCO2017Animal
|
41 |
+
return COCO2017Animal
|
42 |
+
else:
|
43 |
+
raise ValueError
|
44 |
+
|
45 |
+
def __init__(self, path_to_data_dir: str, mode: Mode, image_min_side: float, image_max_side: float):
|
46 |
+
self._path_to_data_dir = path_to_data_dir
|
47 |
+
self._mode = mode
|
48 |
+
self._image_min_side = image_min_side
|
49 |
+
self._image_max_side = image_max_side
|
50 |
+
|
51 |
+
def __len__(self) -> int:
|
52 |
+
raise NotImplementedError
|
53 |
+
|
54 |
+
def __getitem__(self, index: int) -> Tuple[str, Tensor, Tensor, Tensor, Tensor]:
|
55 |
+
raise NotImplementedError
|
56 |
+
|
57 |
+
def evaluate(self, path_to_results_dir: str, image_ids: List[str], bboxes: List[List[float]], classes: List[int], probs: List[float]) -> Tuple[float, str]:
|
58 |
+
raise NotImplementedError
|
59 |
+
|
60 |
+
def _write_results(self, path_to_results_dir: str, image_ids: List[str], bboxes: List[List[float]], classes: List[int], probs: List[float]):
|
61 |
+
raise NotImplementedError
|
62 |
+
|
63 |
+
@property
|
64 |
+
def image_ratios(self) -> List[float]:
|
65 |
+
raise NotImplementedError
|
66 |
+
|
67 |
+
@staticmethod
|
68 |
+
def num_classes() -> int:
|
69 |
+
raise NotImplementedError
|
70 |
+
|
71 |
+
@staticmethod
|
72 |
+
def preprocess(image: PIL.Image.Image, image_min_side: float, image_max_side: float) -> Tuple[Tensor, float]:
|
73 |
+
# resize according to the rules:
|
74 |
+
# 1. scale shorter side to IMAGE_MIN_SIDE
|
75 |
+
# 2. after scaling, if longer side > IMAGE_MAX_SIDE, scale longer side to IMAGE_MAX_SIDE
|
76 |
+
scale_for_shorter_side = image_min_side / min(image.width, image.height)
|
77 |
+
longer_side_after_scaling = max(image.width, image.height) * scale_for_shorter_side
|
78 |
+
scale_for_longer_side = (image_max_side / longer_side_after_scaling) if longer_side_after_scaling > image_max_side else 1
|
79 |
+
scale = scale_for_shorter_side * scale_for_longer_side
|
80 |
+
|
81 |
+
transform = transforms.Compose([
|
82 |
+
transforms.Resize((round(image.height * scale), round(image.width * scale))), # interpolation `BILINEAR` is applied by default
|
83 |
+
transforms.ToTensor(),
|
84 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
85 |
+
])
|
86 |
+
image = transform(image)
|
87 |
+
|
88 |
+
return image, scale
|
89 |
+
|
90 |
+
@staticmethod
|
91 |
+
def padding_collate_fn(batch: List[Tuple[str, Tensor, Tensor, Tensor, Tensor]]) -> Tuple[List[str], Tensor, Tensor, Tensor, Tensor]:
|
92 |
+
image_id_batch, image_batch, scale_batch, bboxes_batch, labels_batch = zip(*batch)
|
93 |
+
|
94 |
+
max_image_width = max([it.shape[2] for it in image_batch])
|
95 |
+
max_image_height = max([it.shape[1] for it in image_batch])
|
96 |
+
max_bboxes_length = max([len(it) for it in bboxes_batch])
|
97 |
+
max_labels_length = max([len(it) for it in labels_batch])
|
98 |
+
|
99 |
+
padded_image_batch = []
|
100 |
+
padded_bboxes_batch = []
|
101 |
+
padded_labels_batch = []
|
102 |
+
|
103 |
+
for image in image_batch:
|
104 |
+
padded_image = F.pad(input=image, pad=(0, max_image_width - image.shape[2], 0, max_image_height - image.shape[1])) # pad has format (left, right, top, bottom)
|
105 |
+
padded_image_batch.append(padded_image)
|
106 |
+
|
107 |
+
for bboxes in bboxes_batch:
|
108 |
+
padded_bboxes = torch.cat([bboxes, torch.zeros(max_bboxes_length - len(bboxes), 4).to(bboxes)])
|
109 |
+
padded_bboxes_batch.append(padded_bboxes)
|
110 |
+
|
111 |
+
for labels in labels_batch:
|
112 |
+
padded_labels = torch.cat([labels, torch.zeros(max_labels_length - len(labels)).to(labels)])
|
113 |
+
padded_labels_batch.append(padded_labels)
|
114 |
+
|
115 |
+
image_id_batch = list(image_id_batch)
|
116 |
+
padded_image_batch = torch.stack(padded_image_batch, dim=0)
|
117 |
+
scale_batch = torch.stack(scale_batch, dim=0)
|
118 |
+
padded_bboxes_batch = torch.stack(padded_bboxes_batch, dim=0)
|
119 |
+
padded_labels_batch = torch.stack(padded_labels_batch, dim=0)
|
120 |
+
|
121 |
+
return image_id_batch, padded_image_batch, scale_batch, padded_bboxes_batch, padded_labels_batch
|
122 |
+
|
123 |
+
class NearestRatioRandomSampler(torch.utils.data.sampler.Sampler):
|
124 |
+
|
125 |
+
def __init__(self, image_ratios: List[float], num_neighbors: int):
|
126 |
+
super().__init__(data_source=None)
|
127 |
+
self._image_ratios = image_ratios
|
128 |
+
self._num_neighbors = num_neighbors
|
129 |
+
|
130 |
+
def __len__(self) -> int:
|
131 |
+
return len(self._image_ratios)
|
132 |
+
|
133 |
+
def __iter__(self) -> Iterator[int]:
|
134 |
+
image_ratios = torch.tensor(self._image_ratios)
|
135 |
+
tall_indices = (image_ratios < 1).nonzero().view(-1)
|
136 |
+
fat_indices = (image_ratios >= 1).nonzero().view(-1)
|
137 |
+
|
138 |
+
tall_indices_length = len(tall_indices)
|
139 |
+
fat_indices_length = len(fat_indices)
|
140 |
+
|
141 |
+
tall_indices = tall_indices[torch.randperm(tall_indices_length)]
|
142 |
+
fat_indices = fat_indices[torch.randperm(fat_indices_length)]
|
143 |
+
|
144 |
+
num_tall_remainder = tall_indices_length % self._num_neighbors
|
145 |
+
num_fat_remainder = fat_indices_length % self._num_neighbors
|
146 |
+
|
147 |
+
tall_indices = tall_indices[:tall_indices_length - num_tall_remainder]
|
148 |
+
fat_indices = fat_indices[:fat_indices_length - num_fat_remainder]
|
149 |
+
|
150 |
+
tall_indices = tall_indices.view(-1, self._num_neighbors)
|
151 |
+
fat_indices = fat_indices.view(-1, self._num_neighbors)
|
152 |
+
merge_indices = torch.cat([tall_indices, fat_indices], dim=0)
|
153 |
+
merge_indices = merge_indices[torch.randperm(len(merge_indices))].view(-1)
|
154 |
+
|
155 |
+
return iter(merge_indices.tolist())
|
dataset/coco2017.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import pickle
|
4 |
+
import random
|
5 |
+
from typing import List, Tuple, Dict
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.utils.data.dataset
|
9 |
+
from PIL import Image, ImageOps
|
10 |
+
from pycocotools.coco import COCO
|
11 |
+
from pycocotools.cocoeval import COCOeval
|
12 |
+
from torch import Tensor
|
13 |
+
from torchvision.datasets import CocoDetection
|
14 |
+
from tqdm import tqdm
|
15 |
+
|
16 |
+
from bbox import BBox
|
17 |
+
from dataset.base import Base
|
18 |
+
from io import StringIO
|
19 |
+
import sys
|
20 |
+
|
21 |
+
|
22 |
+
class COCO2017(Base):
|
23 |
+
|
24 |
+
class Annotation(object):
|
25 |
+
class Object(object):
|
26 |
+
def __init__(self, bbox: BBox, label: int):
|
27 |
+
super().__init__()
|
28 |
+
self.bbox = bbox
|
29 |
+
self.label = label
|
30 |
+
|
31 |
+
def __repr__(self) -> str:
|
32 |
+
return 'Object[label={:d}, bbox={!s}]'.format(
|
33 |
+
self.label, self.bbox)
|
34 |
+
|
35 |
+
def __init__(self, filename: str, objects: List[Object]):
|
36 |
+
super().__init__()
|
37 |
+
self.filename = filename
|
38 |
+
self.objects = objects
|
39 |
+
|
40 |
+
CATEGORY_TO_LABEL_DICT = {
|
41 |
+
'background': 0, 'person': 1, 'bicycle': 2, 'car': 3, 'motorcycle': 4,
|
42 |
+
'airplane': 5, 'bus': 6, 'train': 7, 'truck': 8, 'boat': 9,
|
43 |
+
'traffic light': 10, 'fire hydrant': 11, 'street sign': 12, 'stop sign': 13, 'parking meter': 14,
|
44 |
+
'bench': 15, 'bird': 16, 'cat': 17, 'dog': 18, 'horse': 19,
|
45 |
+
'sheep': 20, 'cow': 21, 'elephant': 22, 'bear': 23, 'zebra': 24,
|
46 |
+
'giraffe': 25, 'hat': 26, 'backpack': 27, 'umbrella': 28, 'shoe': 29,
|
47 |
+
'eye glasses': 30, 'handbag': 31, 'tie': 32, 'suitcase': 33, 'frisbee': 34,
|
48 |
+
'skis': 35, 'snowboard': 36, 'sports ball': 37, 'kite': 38, 'baseball bat': 39,
|
49 |
+
'baseball glove': 40, 'skateboard': 41, 'surfboard': 42, 'tennis racket': 43, 'bottle': 44,
|
50 |
+
'plate': 45, 'wine glass': 46, 'cup': 47, 'fork': 48, 'knife': 49,
|
51 |
+
'spoon': 50, 'bowl': 51, 'banana': 52, 'apple': 53, 'sandwich': 54,
|
52 |
+
'orange': 55, 'broccoli': 56, 'carrot': 57, 'hot dog': 58, 'pizza': 59,
|
53 |
+
'donut': 60, 'cake': 61, 'chair': 62, 'couch': 63, 'potted plant': 64,
|
54 |
+
'bed': 65, 'mirror': 66, 'dining table': 67, 'window': 68, 'desk': 69,
|
55 |
+
'toilet': 70, 'door': 71, 'tv': 72, 'laptop': 73, 'mouse': 74,
|
56 |
+
'remote': 75, 'keyboard': 76, 'cell phone': 77, 'microwave': 78, 'oven': 79,
|
57 |
+
'toaster': 80, 'sink': 81, 'refrigerator': 82, 'blender': 83, 'book': 84,
|
58 |
+
'clock': 85, 'vase': 86, 'scissors': 87, 'teddy bear': 88, 'hair drier': 89,
|
59 |
+
'toothbrush': 90, 'hair brush': 91
|
60 |
+
}
|
61 |
+
|
62 |
+
LABEL_TO_CATEGORY_DICT = {v: k for k, v in CATEGORY_TO_LABEL_DICT.items()}
|
63 |
+
|
64 |
+
def __init__(self, path_to_data_dir: str, mode: Base.Mode, image_min_side: float, image_max_side: float):
|
65 |
+
super().__init__(path_to_data_dir, mode, image_min_side, image_max_side)
|
66 |
+
|
67 |
+
path_to_coco_dir = os.path.join(self._path_to_data_dir, 'COCO')
|
68 |
+
path_to_annotations_dir = os.path.join(path_to_coco_dir, 'annotations')
|
69 |
+
path_to_caches_dir = os.path.join('caches', 'coco2017', f'{self._mode.value}')
|
70 |
+
path_to_image_ids_pickle = os.path.join(path_to_caches_dir, 'image-ids.pkl')
|
71 |
+
path_to_image_id_dict_pickle = os.path.join(path_to_caches_dir, 'image-id-dict.pkl')
|
72 |
+
path_to_image_ratios_pickle = os.path.join(path_to_caches_dir, 'image-ratios.pkl')
|
73 |
+
|
74 |
+
if self._mode == COCO2017.Mode.TRAIN:
|
75 |
+
path_to_jpeg_images_dir = os.path.join(path_to_coco_dir, 'train2017')
|
76 |
+
path_to_annotation = os.path.join(path_to_annotations_dir, 'instances_train2017.json')
|
77 |
+
elif self._mode == COCO2017.Mode.EVAL:
|
78 |
+
path_to_jpeg_images_dir = os.path.join(path_to_coco_dir, 'val2017')
|
79 |
+
path_to_annotation = os.path.join(path_to_annotations_dir, 'instances_val2017.json')
|
80 |
+
else:
|
81 |
+
raise ValueError('invalid mode')
|
82 |
+
|
83 |
+
coco_dataset = CocoDetection(root=path_to_jpeg_images_dir, annFile=path_to_annotation)
|
84 |
+
|
85 |
+
if os.path.exists(path_to_image_ids_pickle) and os.path.exists(path_to_image_id_dict_pickle):
|
86 |
+
print('loading cache files...')
|
87 |
+
|
88 |
+
with open(path_to_image_ids_pickle, 'rb') as f:
|
89 |
+
self._image_ids = pickle.load(f)
|
90 |
+
|
91 |
+
with open(path_to_image_id_dict_pickle, 'rb') as f:
|
92 |
+
self._image_id_to_annotation_dict = pickle.load(f)
|
93 |
+
|
94 |
+
with open(path_to_image_ratios_pickle, 'rb') as f:
|
95 |
+
self._image_ratios = pickle.load(f)
|
96 |
+
else:
|
97 |
+
print('generating cache files...')
|
98 |
+
|
99 |
+
os.makedirs(path_to_caches_dir, exist_ok=True)
|
100 |
+
|
101 |
+
self._image_ids: List[str] = []
|
102 |
+
self._image_id_to_annotation_dict: Dict[str, COCO2017.Annotation] = {}
|
103 |
+
self._image_ratios = []
|
104 |
+
|
105 |
+
for idx, (image, annotation) in enumerate(tqdm(coco_dataset)):
|
106 |
+
if len(annotation) > 0:
|
107 |
+
image_id = str(annotation[0]['image_id']) # all image_id in annotation are the same
|
108 |
+
self._image_ids.append(image_id)
|
109 |
+
self._image_id_to_annotation_dict[image_id] = COCO2017.Annotation(
|
110 |
+
filename=os.path.join(path_to_jpeg_images_dir, '{:012d}.jpg'.format(int(image_id))),
|
111 |
+
objects=[COCO2017.Annotation.Object(
|
112 |
+
bbox=BBox( # `ann['bbox']` is in the format [left, top, width, height]
|
113 |
+
left=ann['bbox'][0],
|
114 |
+
top=ann['bbox'][1],
|
115 |
+
right=ann['bbox'][0] + ann['bbox'][2],
|
116 |
+
bottom=ann['bbox'][1] + ann['bbox'][3]
|
117 |
+
),
|
118 |
+
label=ann['category_id'])
|
119 |
+
for ann in annotation]
|
120 |
+
)
|
121 |
+
|
122 |
+
ratio = float(image.width / image.height)
|
123 |
+
self._image_ratios.append(ratio)
|
124 |
+
|
125 |
+
with open(path_to_image_ids_pickle, 'wb') as f:
|
126 |
+
pickle.dump(self._image_ids, f)
|
127 |
+
|
128 |
+
with open(path_to_image_id_dict_pickle, 'wb') as f:
|
129 |
+
pickle.dump(self._image_id_to_annotation_dict, f)
|
130 |
+
|
131 |
+
with open(path_to_image_ratios_pickle, 'wb') as f:
|
132 |
+
pickle.dump(self.image_ratios, f)
|
133 |
+
|
134 |
+
def __len__(self) -> int:
|
135 |
+
return len(self._image_id_to_annotation_dict)
|
136 |
+
|
137 |
+
def __getitem__(self, index: int) -> Tuple[str, Tensor, Tensor, Tensor, Tensor]:
|
138 |
+
image_id = self._image_ids[index]
|
139 |
+
annotation = self._image_id_to_annotation_dict[image_id]
|
140 |
+
|
141 |
+
bboxes = [obj.bbox.tolist() for obj in annotation.objects]
|
142 |
+
labels = [obj.label for obj in annotation.objects]
|
143 |
+
|
144 |
+
bboxes = torch.tensor(bboxes, dtype=torch.float)
|
145 |
+
labels = torch.tensor(labels, dtype=torch.long)
|
146 |
+
|
147 |
+
image = Image.open(annotation.filename).convert('RGB') # for some grayscale images
|
148 |
+
|
149 |
+
# random flip on only training mode
|
150 |
+
if self._mode == COCO2017.Mode.TRAIN and random.random() > 0.5:
|
151 |
+
image = ImageOps.mirror(image)
|
152 |
+
bboxes[:, [0, 2]] = image.width - bboxes[:, [2, 0]] # index 0 and 2 represent `left` and `right` respectively
|
153 |
+
|
154 |
+
image, scale = COCO2017.preprocess(image, self._image_min_side, self._image_max_side)
|
155 |
+
scale = torch.tensor(scale, dtype=torch.float)
|
156 |
+
bboxes *= scale
|
157 |
+
|
158 |
+
return image_id, image, scale, bboxes, labels
|
159 |
+
|
160 |
+
def evaluate(self, path_to_results_dir: str, image_ids: List[str], bboxes: List[List[float]], classes: List[int], probs: List[float]) -> Tuple[float, str]:
|
161 |
+
self._write_results(path_to_results_dir, image_ids, bboxes, classes, probs)
|
162 |
+
|
163 |
+
annType = 'bbox'
|
164 |
+
path_to_coco_dir = os.path.join(self._path_to_data_dir, 'COCO')
|
165 |
+
path_to_annotations_dir = os.path.join(path_to_coco_dir, 'annotations')
|
166 |
+
path_to_annotation = os.path.join(path_to_annotations_dir, 'instances_val2017.json')
|
167 |
+
|
168 |
+
cocoGt = COCO(path_to_annotation)
|
169 |
+
cocoDt = cocoGt.loadRes(os.path.join(path_to_results_dir, 'results.json'))
|
170 |
+
|
171 |
+
cocoEval = COCOeval(cocoGt, cocoDt, annType)
|
172 |
+
cocoEval.evaluate()
|
173 |
+
cocoEval.accumulate()
|
174 |
+
|
175 |
+
original_stdout = sys.stdout
|
176 |
+
string_stdout = StringIO()
|
177 |
+
sys.stdout = string_stdout
|
178 |
+
cocoEval.summarize()
|
179 |
+
sys.stdout = original_stdout
|
180 |
+
|
181 |
+
mean_ap = cocoEval.stats[0].item() # stats[0] records AP@[0.5:0.95]
|
182 |
+
detail = string_stdout.getvalue()
|
183 |
+
|
184 |
+
return mean_ap, detail
|
185 |
+
|
186 |
+
def _write_results(self, path_to_results_dir: str, image_ids: List[str], bboxes: List[List[float]], classes: List[int], probs: List[float]):
|
187 |
+
results = []
|
188 |
+
for image_id, bbox, cls, prob in zip(image_ids, bboxes, classes, probs):
|
189 |
+
results.append(
|
190 |
+
{
|
191 |
+
'image_id': int(image_id), # COCO evaluation requires `image_id` to be type `int`
|
192 |
+
'category_id': cls,
|
193 |
+
'bbox': [ # format [left, top, width, height] is expected
|
194 |
+
bbox[0],
|
195 |
+
bbox[1],
|
196 |
+
bbox[2] - bbox[0],
|
197 |
+
bbox[3] - bbox[1]
|
198 |
+
],
|
199 |
+
'score': prob
|
200 |
+
}
|
201 |
+
)
|
202 |
+
|
203 |
+
with open(os.path.join(path_to_results_dir, 'results.json'), 'w') as f:
|
204 |
+
json.dump(results, f)
|
205 |
+
|
206 |
+
@property
|
207 |
+
def image_ratios(self) -> List[float]:
|
208 |
+
return self._image_ratios
|
209 |
+
|
210 |
+
@staticmethod
|
211 |
+
def num_classes() -> int:
|
212 |
+
return 92
|
dataset/coco2017_animal.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import pickle
|
4 |
+
import random
|
5 |
+
import sys
|
6 |
+
from io import StringIO
|
7 |
+
from typing import List, Tuple, Dict
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.utils.data.dataset
|
11 |
+
from PIL import Image, ImageOps
|
12 |
+
from pycocotools.coco import COCO
|
13 |
+
from pycocotools.cocoeval import COCOeval
|
14 |
+
from torch import Tensor
|
15 |
+
from torchvision.datasets import CocoDetection
|
16 |
+
from tqdm import tqdm
|
17 |
+
|
18 |
+
from bbox import BBox
|
19 |
+
from dataset.base import Base
|
20 |
+
from dataset.coco2017 import COCO2017
|
21 |
+
|
22 |
+
|
23 |
+
class COCO2017Animal(Base):
|
24 |
+
|
25 |
+
class Annotation(object):
|
26 |
+
class Object(object):
|
27 |
+
def __init__(self, bbox: BBox, label: int):
|
28 |
+
super().__init__()
|
29 |
+
self.bbox = bbox
|
30 |
+
self.label = label
|
31 |
+
|
32 |
+
def __repr__(self) -> str:
|
33 |
+
return 'Object[label={:d}, bbox={!s}]'.format(
|
34 |
+
self.label, self.bbox)
|
35 |
+
|
36 |
+
def __init__(self, filename: str, objects: List[Object]):
|
37 |
+
super().__init__()
|
38 |
+
self.filename = filename
|
39 |
+
self.objects = objects
|
40 |
+
|
41 |
+
CATEGORY_TO_LABEL_DICT = {
|
42 |
+
'background': 0,
|
43 |
+
'bird': 1, 'cat': 2, 'dog': 3, 'horse': 4, 'sheep': 5,
|
44 |
+
'cow': 6, 'elephant': 7, 'bear': 8, 'zebra': 9, 'giraffe': 10
|
45 |
+
}
|
46 |
+
|
47 |
+
LABEL_TO_CATEGORY_DICT = {v: k for k, v in CATEGORY_TO_LABEL_DICT.items()}
|
48 |
+
|
49 |
+
def __init__(self, path_to_data_dir: str, mode: Base.Mode, image_min_side: float, image_max_side: float):
|
50 |
+
super().__init__(path_to_data_dir, mode, image_min_side, image_max_side)
|
51 |
+
|
52 |
+
path_to_coco_dir = os.path.join(self._path_to_data_dir, 'COCO')
|
53 |
+
path_to_annotations_dir = os.path.join(path_to_coco_dir, 'annotations')
|
54 |
+
path_to_caches_dir = os.path.join('caches', 'coco2017-animal', f'{self._mode.value}')
|
55 |
+
path_to_image_ids_pickle = os.path.join(path_to_caches_dir, 'image-ids.pkl')
|
56 |
+
path_to_image_id_dict_pickle = os.path.join(path_to_caches_dir, 'image-id-dict.pkl')
|
57 |
+
path_to_image_ratios_pickle = os.path.join(path_to_caches_dir, 'image-ratios.pkl')
|
58 |
+
|
59 |
+
if self._mode == COCO2017Animal.Mode.TRAIN:
|
60 |
+
path_to_jpeg_images_dir = os.path.join(path_to_coco_dir, 'train2017')
|
61 |
+
path_to_annotation = os.path.join(path_to_annotations_dir, 'instances_train2017.json')
|
62 |
+
elif self._mode == COCO2017Animal.Mode.EVAL:
|
63 |
+
path_to_jpeg_images_dir = os.path.join(path_to_coco_dir, 'val2017')
|
64 |
+
path_to_annotation = os.path.join(path_to_annotations_dir, 'instances_val2017.json')
|
65 |
+
else:
|
66 |
+
raise ValueError('invalid mode')
|
67 |
+
|
68 |
+
coco_dataset = CocoDetection(root=path_to_jpeg_images_dir, annFile=path_to_annotation)
|
69 |
+
|
70 |
+
if os.path.exists(path_to_image_ids_pickle) and os.path.exists(path_to_image_id_dict_pickle):
|
71 |
+
print('loading cache files...')
|
72 |
+
|
73 |
+
with open(path_to_image_ids_pickle, 'rb') as f:
|
74 |
+
self._image_ids = pickle.load(f)
|
75 |
+
|
76 |
+
with open(path_to_image_id_dict_pickle, 'rb') as f:
|
77 |
+
self._image_id_to_annotation_dict = pickle.load(f)
|
78 |
+
|
79 |
+
with open(path_to_image_ratios_pickle, 'rb') as f:
|
80 |
+
self._image_ratios = pickle.load(f)
|
81 |
+
else:
|
82 |
+
print('generating cache files...')
|
83 |
+
|
84 |
+
os.makedirs(path_to_caches_dir, exist_ok=True)
|
85 |
+
|
86 |
+
self._image_id_to_annotation_dict: Dict[str, COCO2017Animal.Annotation] = {}
|
87 |
+
self._image_ratios = []
|
88 |
+
|
89 |
+
for idx, (image, annotation) in enumerate(tqdm(coco_dataset)):
|
90 |
+
if len(annotation) > 0:
|
91 |
+
image_id = str(annotation[0]['image_id']) # all image_id in annotation are the same
|
92 |
+
annotation = COCO2017Animal.Annotation(
|
93 |
+
filename=os.path.join(path_to_jpeg_images_dir, '{:012d}.jpg'.format(int(image_id))),
|
94 |
+
objects=[COCO2017Animal.Annotation.Object(
|
95 |
+
bbox=BBox( # `ann['bbox']` is in the format [left, top, width, height]
|
96 |
+
left=ann['bbox'][0],
|
97 |
+
top=ann['bbox'][1],
|
98 |
+
right=ann['bbox'][0] + ann['bbox'][2],
|
99 |
+
bottom=ann['bbox'][1] + ann['bbox'][3]
|
100 |
+
),
|
101 |
+
label=ann['category_id'])
|
102 |
+
for ann in annotation]
|
103 |
+
)
|
104 |
+
annotation.objects = [obj for obj in annotation.objects
|
105 |
+
if obj.label in [COCO2017.CATEGORY_TO_LABEL_DICT[category] # filtering label should refer to original `COCO2017` dataset
|
106 |
+
for category in COCO2017Animal.CATEGORY_TO_LABEL_DICT.keys()][1:]]
|
107 |
+
|
108 |
+
if len(annotation.objects) > 0:
|
109 |
+
self._image_id_to_annotation_dict[image_id] = annotation
|
110 |
+
|
111 |
+
ratio = float(image.width / image.height)
|
112 |
+
self._image_ratios.append(ratio)
|
113 |
+
|
114 |
+
self._image_ids = list(self._image_id_to_annotation_dict.keys())
|
115 |
+
|
116 |
+
with open(path_to_image_ids_pickle, 'wb') as f:
|
117 |
+
pickle.dump(self._image_ids, f)
|
118 |
+
|
119 |
+
with open(path_to_image_id_dict_pickle, 'wb') as f:
|
120 |
+
pickle.dump(self._image_id_to_annotation_dict, f)
|
121 |
+
|
122 |
+
with open(path_to_image_ratios_pickle, 'wb') as f:
|
123 |
+
pickle.dump(self.image_ratios, f)
|
124 |
+
|
125 |
+
def __len__(self) -> int:
|
126 |
+
return len(self._image_id_to_annotation_dict)
|
127 |
+
|
128 |
+
def __getitem__(self, index: int) -> Tuple[str, Tensor, Tensor, Tensor, Tensor]:
|
129 |
+
image_id = self._image_ids[index]
|
130 |
+
annotation = self._image_id_to_annotation_dict[image_id]
|
131 |
+
|
132 |
+
bboxes = [obj.bbox.tolist() for obj in annotation.objects]
|
133 |
+
labels = [COCO2017Animal.CATEGORY_TO_LABEL_DICT[COCO2017.LABEL_TO_CATEGORY_DICT[obj.label]] for obj in annotation.objects] # mapping from original `COCO2017` dataset
|
134 |
+
|
135 |
+
bboxes = torch.tensor(bboxes, dtype=torch.float)
|
136 |
+
labels = torch.tensor(labels, dtype=torch.long)
|
137 |
+
|
138 |
+
image = Image.open(annotation.filename).convert('RGB') # for some grayscale images
|
139 |
+
|
140 |
+
# random flip on only training mode
|
141 |
+
if self._mode == COCO2017Animal.Mode.TRAIN and random.random() > 0.5:
|
142 |
+
image = ImageOps.mirror(image)
|
143 |
+
bboxes[:, [0, 2]] = image.width - bboxes[:, [2, 0]] # index 0 and 2 represent `left` and `right` respectively
|
144 |
+
|
145 |
+
image, scale = COCO2017Animal.preprocess(image, self._image_min_side, self._image_max_side)
|
146 |
+
scale = torch.tensor(scale, dtype=torch.float)
|
147 |
+
bboxes *= scale
|
148 |
+
|
149 |
+
return image_id, image, scale, bboxes, labels
|
150 |
+
|
151 |
+
def evaluate(self, path_to_results_dir: str, image_ids: List[str], bboxes: List[List[float]], classes: List[int], probs: List[float]) -> Tuple[float, str]:
|
152 |
+
self._write_results(path_to_results_dir, image_ids, bboxes, classes, probs)
|
153 |
+
|
154 |
+
annType = 'bbox'
|
155 |
+
path_to_coco_dir = os.path.join(self._path_to_data_dir, 'COCO')
|
156 |
+
path_to_annotations_dir = os.path.join(path_to_coco_dir, 'annotations')
|
157 |
+
path_to_annotation = os.path.join(path_to_annotations_dir, 'instances_val2017.json')
|
158 |
+
|
159 |
+
cocoGt = COCO(path_to_annotation)
|
160 |
+
cocoDt = cocoGt.loadRes(os.path.join(path_to_results_dir, 'results.json'))
|
161 |
+
|
162 |
+
cocoEval = COCOeval(cocoGt, cocoDt, annType)
|
163 |
+
cocoEval.params.catIds = [COCO2017.CATEGORY_TO_LABEL_DICT[category] # filtering label should refer to original `COCO2017` dataset
|
164 |
+
for category in COCO2017Animal.CATEGORY_TO_LABEL_DICT.keys()]
|
165 |
+
cocoEval.evaluate()
|
166 |
+
cocoEval.accumulate()
|
167 |
+
|
168 |
+
original_stdout = sys.stdout
|
169 |
+
string_stdout = StringIO()
|
170 |
+
sys.stdout = string_stdout
|
171 |
+
cocoEval.summarize()
|
172 |
+
sys.stdout = original_stdout
|
173 |
+
|
174 |
+
mean_ap = cocoEval.stats[0].item() # stats[0] records AP@[0.5:0.95]
|
175 |
+
detail = string_stdout.getvalue()
|
176 |
+
|
177 |
+
return mean_ap, detail
|
178 |
+
|
179 |
+
def _write_results(self, path_to_results_dir: str, image_ids: List[str], bboxes: List[List[float]], classes: List[int], probs: List[float]):
|
180 |
+
results = []
|
181 |
+
for image_id, bbox, cls, prob in zip(image_ids, bboxes, classes, probs):
|
182 |
+
results.append(
|
183 |
+
{
|
184 |
+
'image_id': int(image_id), # COCO evaluation requires `image_id` to be type `int`
|
185 |
+
'category_id': COCO2017.CATEGORY_TO_LABEL_DICT[COCO2017Animal.LABEL_TO_CATEGORY_DICT[cls]], # mapping to original `COCO2017` dataset
|
186 |
+
'bbox': [ # format [left, top, width, height] is expected
|
187 |
+
bbox[0],
|
188 |
+
bbox[1],
|
189 |
+
bbox[2] - bbox[0],
|
190 |
+
bbox[3] - bbox[1]
|
191 |
+
],
|
192 |
+
'score': prob
|
193 |
+
}
|
194 |
+
)
|
195 |
+
|
196 |
+
with open(os.path.join(path_to_results_dir, 'results.json'), 'w') as f:
|
197 |
+
json.dump(results, f)
|
198 |
+
|
199 |
+
@property
|
200 |
+
def image_ratios(self) -> List[float]:
|
201 |
+
return self._image_ratios
|
202 |
+
|
203 |
+
@staticmethod
|
204 |
+
def num_classes() -> int:
|
205 |
+
return 11
|
dataset/coco2017_car.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import pickle
|
4 |
+
import random
|
5 |
+
import sys
|
6 |
+
from io import StringIO
|
7 |
+
from typing import List, Tuple, Dict
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.utils.data.dataset
|
11 |
+
from PIL import Image, ImageOps
|
12 |
+
from pycocotools.coco import COCO
|
13 |
+
from pycocotools.cocoeval import COCOeval
|
14 |
+
from torch import Tensor
|
15 |
+
from torchvision.datasets import CocoDetection
|
16 |
+
from tqdm import tqdm
|
17 |
+
|
18 |
+
from bbox import BBox
|
19 |
+
from dataset.base import Base
|
20 |
+
from dataset.coco2017 import COCO2017
|
21 |
+
|
22 |
+
|
23 |
+
class COCO2017Car(Base):
|
24 |
+
|
25 |
+
class Annotation(object):
|
26 |
+
class Object(object):
|
27 |
+
def __init__(self, bbox: BBox, label: int):
|
28 |
+
super().__init__()
|
29 |
+
self.bbox = bbox
|
30 |
+
self.label = label
|
31 |
+
|
32 |
+
def __repr__(self) -> str:
|
33 |
+
return 'Object[label={:d}, bbox={!s}]'.format(
|
34 |
+
self.label, self.bbox)
|
35 |
+
|
36 |
+
def __init__(self, filename: str, objects: List[Object]):
|
37 |
+
super().__init__()
|
38 |
+
self.filename = filename
|
39 |
+
self.objects = objects
|
40 |
+
|
41 |
+
CATEGORY_TO_LABEL_DICT = {
|
42 |
+
'background': 0, 'car': 1
|
43 |
+
}
|
44 |
+
|
45 |
+
LABEL_TO_CATEGORY_DICT = {v: k for k, v in CATEGORY_TO_LABEL_DICT.items()}
|
46 |
+
|
47 |
+
def __init__(self, path_to_data_dir: str, mode: Base.Mode, image_min_side: float, image_max_side: float):
|
48 |
+
super().__init__(path_to_data_dir, mode, image_min_side, image_max_side)
|
49 |
+
|
50 |
+
path_to_coco_dir = os.path.join(self._path_to_data_dir, 'COCO')
|
51 |
+
path_to_annotations_dir = os.path.join(path_to_coco_dir, 'annotations')
|
52 |
+
path_to_caches_dir = os.path.join('caches', 'coco2017-car', f'{self._mode.value}')
|
53 |
+
path_to_image_ids_pickle = os.path.join(path_to_caches_dir, 'image-ids.pkl')
|
54 |
+
path_to_image_id_dict_pickle = os.path.join(path_to_caches_dir, 'image-id-dict.pkl')
|
55 |
+
path_to_image_ratios_pickle = os.path.join(path_to_caches_dir, 'image-ratios.pkl')
|
56 |
+
|
57 |
+
if self._mode == COCO2017Car.Mode.TRAIN:
|
58 |
+
path_to_jpeg_images_dir = os.path.join(path_to_coco_dir, 'train2017')
|
59 |
+
path_to_annotation = os.path.join(path_to_annotations_dir, 'instances_train2017.json')
|
60 |
+
elif self._mode == COCO2017Car.Mode.EVAL:
|
61 |
+
path_to_jpeg_images_dir = os.path.join(path_to_coco_dir, 'val2017')
|
62 |
+
path_to_annotation = os.path.join(path_to_annotations_dir, 'instances_val2017.json')
|
63 |
+
else:
|
64 |
+
raise ValueError('invalid mode')
|
65 |
+
|
66 |
+
coco_dataset = CocoDetection(root=path_to_jpeg_images_dir, annFile=path_to_annotation)
|
67 |
+
|
68 |
+
if os.path.exists(path_to_image_ids_pickle) and os.path.exists(path_to_image_id_dict_pickle):
|
69 |
+
print('loading cache files...')
|
70 |
+
|
71 |
+
with open(path_to_image_ids_pickle, 'rb') as f:
|
72 |
+
self._image_ids = pickle.load(f)
|
73 |
+
|
74 |
+
with open(path_to_image_id_dict_pickle, 'rb') as f:
|
75 |
+
self._image_id_to_annotation_dict = pickle.load(f)
|
76 |
+
|
77 |
+
with open(path_to_image_ratios_pickle, 'rb') as f:
|
78 |
+
self._image_ratios = pickle.load(f)
|
79 |
+
else:
|
80 |
+
print('generating cache files...')
|
81 |
+
|
82 |
+
os.makedirs(path_to_caches_dir, exist_ok=True)
|
83 |
+
|
84 |
+
self._image_id_to_annotation_dict: Dict[str, COCO2017Car.Annotation] = {}
|
85 |
+
self._image_ratios = []
|
86 |
+
|
87 |
+
for idx, (image, annotation) in enumerate(tqdm(coco_dataset)):
|
88 |
+
if len(annotation) > 0:
|
89 |
+
image_id = str(annotation[0]['image_id']) # all image_id in annotation are the same
|
90 |
+
annotation = COCO2017Car.Annotation(
|
91 |
+
filename=os.path.join(path_to_jpeg_images_dir, '{:012d}.jpg'.format(int(image_id))),
|
92 |
+
objects=[COCO2017Car.Annotation.Object(
|
93 |
+
bbox=BBox( # `ann['bbox']` is in the format [left, top, width, height]
|
94 |
+
left=ann['bbox'][0],
|
95 |
+
top=ann['bbox'][1],
|
96 |
+
right=ann['bbox'][0] + ann['bbox'][2],
|
97 |
+
bottom=ann['bbox'][1] + ann['bbox'][3]
|
98 |
+
),
|
99 |
+
label=ann['category_id'])
|
100 |
+
for ann in annotation]
|
101 |
+
)
|
102 |
+
annotation.objects = [obj for obj in annotation.objects
|
103 |
+
if obj.label in [COCO2017.CATEGORY_TO_LABEL_DICT['car']]] # filtering label should refer to original `COCO2017` dataset
|
104 |
+
|
105 |
+
if len(annotation.objects) > 0:
|
106 |
+
self._image_id_to_annotation_dict[image_id] = annotation
|
107 |
+
|
108 |
+
ratio = float(image.width / image.height)
|
109 |
+
self._image_ratios.append(ratio)
|
110 |
+
|
111 |
+
self._image_ids = list(self._image_id_to_annotation_dict.keys())
|
112 |
+
|
113 |
+
with open(path_to_image_ids_pickle, 'wb') as f:
|
114 |
+
pickle.dump(self._image_ids, f)
|
115 |
+
|
116 |
+
with open(path_to_image_id_dict_pickle, 'wb') as f:
|
117 |
+
pickle.dump(self._image_id_to_annotation_dict, f)
|
118 |
+
|
119 |
+
with open(path_to_image_ratios_pickle, 'wb') as f:
|
120 |
+
pickle.dump(self.image_ratios, f)
|
121 |
+
|
122 |
+
def __len__(self) -> int:
|
123 |
+
return len(self._image_id_to_annotation_dict)
|
124 |
+
|
125 |
+
def __getitem__(self, index: int) -> Tuple[str, Tensor, Tensor, Tensor, Tensor]:
|
126 |
+
image_id = self._image_ids[index]
|
127 |
+
annotation = self._image_id_to_annotation_dict[image_id]
|
128 |
+
|
129 |
+
bboxes = [obj.bbox.tolist() for obj in annotation.objects]
|
130 |
+
labels = [COCO2017Car.CATEGORY_TO_LABEL_DICT[COCO2017.LABEL_TO_CATEGORY_DICT[obj.label]] for obj in annotation.objects] # mapping from original `COCO2017` dataset
|
131 |
+
|
132 |
+
bboxes = torch.tensor(bboxes, dtype=torch.float)
|
133 |
+
labels = torch.tensor(labels, dtype=torch.long)
|
134 |
+
|
135 |
+
image = Image.open(annotation.filename).convert('RGB') # for some grayscale images
|
136 |
+
|
137 |
+
# random flip on only training mode
|
138 |
+
if self._mode == COCO2017Car.Mode.TRAIN and random.random() > 0.5:
|
139 |
+
image = ImageOps.mirror(image)
|
140 |
+
bboxes[:, [0, 2]] = image.width - bboxes[:, [2, 0]] # index 0 and 2 represent `left` and `right` respectively
|
141 |
+
|
142 |
+
image, scale = COCO2017Car.preprocess(image, self._image_min_side, self._image_max_side)
|
143 |
+
scale = torch.tensor(scale, dtype=torch.float)
|
144 |
+
bboxes *= scale
|
145 |
+
|
146 |
+
return image_id, image, scale, bboxes, labels
|
147 |
+
|
148 |
+
def evaluate(self, path_to_results_dir: str, image_ids: List[str], bboxes: List[List[float]], classes: List[int], probs: List[float]) -> Tuple[float, str]:
|
149 |
+
self._write_results(path_to_results_dir, image_ids, bboxes, classes, probs)
|
150 |
+
|
151 |
+
annType = 'bbox'
|
152 |
+
path_to_coco_dir = os.path.join(self._path_to_data_dir, 'COCO')
|
153 |
+
path_to_annotations_dir = os.path.join(path_to_coco_dir, 'annotations')
|
154 |
+
path_to_annotation = os.path.join(path_to_annotations_dir, 'instances_val2017.json')
|
155 |
+
|
156 |
+
cocoGt = COCO(path_to_annotation)
|
157 |
+
cocoDt = cocoGt.loadRes(os.path.join(path_to_results_dir, 'results.json'))
|
158 |
+
|
159 |
+
cocoEval = COCOeval(cocoGt, cocoDt, annType)
|
160 |
+
cocoEval.params.catIds = COCO2017.CATEGORY_TO_LABEL_DICT['car'] # filtering label should refer to original `COCO2017` dataset
|
161 |
+
cocoEval.evaluate()
|
162 |
+
cocoEval.accumulate()
|
163 |
+
|
164 |
+
original_stdout = sys.stdout
|
165 |
+
string_stdout = StringIO()
|
166 |
+
sys.stdout = string_stdout
|
167 |
+
cocoEval.summarize()
|
168 |
+
sys.stdout = original_stdout
|
169 |
+
|
170 |
+
mean_ap = cocoEval.stats[0].item() # stats[0] records AP@[0.5:0.95]
|
171 |
+
detail = string_stdout.getvalue()
|
172 |
+
|
173 |
+
return mean_ap, detail
|
174 |
+
|
175 |
+
def _write_results(self, path_to_results_dir: str, image_ids: List[str], bboxes: List[List[float]], classes: List[int], probs: List[float]):
|
176 |
+
results = []
|
177 |
+
for image_id, bbox, cls, prob in zip(image_ids, bboxes, classes, probs):
|
178 |
+
results.append(
|
179 |
+
{
|
180 |
+
'image_id': int(image_id), # COCO evaluation requires `image_id` to be type `int`
|
181 |
+
'category_id': COCO2017.CATEGORY_TO_LABEL_DICT[COCO2017Car.LABEL_TO_CATEGORY_DICT[cls]], # mapping to original `COCO2017` dataset
|
182 |
+
'bbox': [ # format [left, top, width, height] is expected
|
183 |
+
bbox[0],
|
184 |
+
bbox[1],
|
185 |
+
bbox[2] - bbox[0],
|
186 |
+
bbox[3] - bbox[1]
|
187 |
+
],
|
188 |
+
'score': prob
|
189 |
+
}
|
190 |
+
)
|
191 |
+
|
192 |
+
with open(os.path.join(path_to_results_dir, 'results.json'), 'w') as f:
|
193 |
+
json.dump(results, f)
|
194 |
+
|
195 |
+
@property
|
196 |
+
def image_ratios(self) -> List[float]:
|
197 |
+
return self._image_ratios
|
198 |
+
|
199 |
+
@staticmethod
|
200 |
+
def num_classes() -> int:
|
201 |
+
return 2
|
dataset/coco2017_person.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import pickle
|
4 |
+
import random
|
5 |
+
import sys
|
6 |
+
from io import StringIO
|
7 |
+
from typing import List, Tuple, Dict
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.utils.data.dataset
|
11 |
+
from PIL import Image, ImageOps
|
12 |
+
from pycocotools.coco import COCO
|
13 |
+
from pycocotools.cocoeval import COCOeval
|
14 |
+
from torch import Tensor
|
15 |
+
from torchvision.datasets import CocoDetection
|
16 |
+
from tqdm import tqdm
|
17 |
+
|
18 |
+
from bbox import BBox
|
19 |
+
from dataset.base import Base
|
20 |
+
from dataset.coco2017 import COCO2017
|
21 |
+
|
22 |
+
|
23 |
+
class COCO2017Person(Base):
|
24 |
+
|
25 |
+
class Annotation(object):
|
26 |
+
class Object(object):
|
27 |
+
def __init__(self, bbox: BBox, label: int):
|
28 |
+
super().__init__()
|
29 |
+
self.bbox = bbox
|
30 |
+
self.label = label
|
31 |
+
|
32 |
+
def __repr__(self) -> str:
|
33 |
+
return 'Object[label={:d}, bbox={!s}]'.format(
|
34 |
+
self.label, self.bbox)
|
35 |
+
|
36 |
+
def __init__(self, filename: str, objects: List[Object]):
|
37 |
+
super().__init__()
|
38 |
+
self.filename = filename
|
39 |
+
self.objects = objects
|
40 |
+
|
41 |
+
CATEGORY_TO_LABEL_DICT = {
|
42 |
+
'background': 0, 'person': 1
|
43 |
+
}
|
44 |
+
|
45 |
+
LABEL_TO_CATEGORY_DICT = {v: k for k, v in CATEGORY_TO_LABEL_DICT.items()}
|
46 |
+
|
47 |
+
def __init__(self, path_to_data_dir: str, mode: Base.Mode, image_min_side: float, image_max_side: float):
|
48 |
+
super().__init__(path_to_data_dir, mode, image_min_side, image_max_side)
|
49 |
+
|
50 |
+
path_to_coco_dir = os.path.join(self._path_to_data_dir, 'COCO')
|
51 |
+
path_to_annotations_dir = os.path.join(path_to_coco_dir, 'annotations')
|
52 |
+
path_to_caches_dir = os.path.join('caches', 'coco2017-person', f'{self._mode.value}')
|
53 |
+
path_to_image_ids_pickle = os.path.join(path_to_caches_dir, 'image-ids.pkl')
|
54 |
+
path_to_image_id_dict_pickle = os.path.join(path_to_caches_dir, 'image-id-dict.pkl')
|
55 |
+
path_to_image_ratios_pickle = os.path.join(path_to_caches_dir, 'image-ratios.pkl')
|
56 |
+
|
57 |
+
if self._mode == COCO2017Person.Mode.TRAIN:
|
58 |
+
path_to_jpeg_images_dir = os.path.join(path_to_coco_dir, 'train2017')
|
59 |
+
path_to_annotation = os.path.join(path_to_annotations_dir, 'instances_train2017.json')
|
60 |
+
elif self._mode == COCO2017Person.Mode.EVAL:
|
61 |
+
path_to_jpeg_images_dir = os.path.join(path_to_coco_dir, 'val2017')
|
62 |
+
path_to_annotation = os.path.join(path_to_annotations_dir, 'instances_val2017.json')
|
63 |
+
else:
|
64 |
+
raise ValueError('invalid mode')
|
65 |
+
|
66 |
+
coco_dataset = CocoDetection(root=path_to_jpeg_images_dir, annFile=path_to_annotation)
|
67 |
+
|
68 |
+
if os.path.exists(path_to_image_ids_pickle) and os.path.exists(path_to_image_id_dict_pickle):
|
69 |
+
print('loading cache files...')
|
70 |
+
|
71 |
+
with open(path_to_image_ids_pickle, 'rb') as f:
|
72 |
+
self._image_ids = pickle.load(f)
|
73 |
+
|
74 |
+
with open(path_to_image_id_dict_pickle, 'rb') as f:
|
75 |
+
self._image_id_to_annotation_dict = pickle.load(f)
|
76 |
+
|
77 |
+
with open(path_to_image_ratios_pickle, 'rb') as f:
|
78 |
+
self._image_ratios = pickle.load(f)
|
79 |
+
else:
|
80 |
+
print('generating cache files...')
|
81 |
+
|
82 |
+
os.makedirs(path_to_caches_dir, exist_ok=True)
|
83 |
+
|
84 |
+
self._image_id_to_annotation_dict: Dict[str, COCO2017Person.Annotation] = {}
|
85 |
+
self._image_ratios = []
|
86 |
+
|
87 |
+
for idx, (image, annotation) in enumerate(tqdm(coco_dataset)):
|
88 |
+
if len(annotation) > 0:
|
89 |
+
image_id = str(annotation[0]['image_id']) # all image_id in annotation are the same
|
90 |
+
annotation = COCO2017Person.Annotation(
|
91 |
+
filename=os.path.join(path_to_jpeg_images_dir, '{:012d}.jpg'.format(int(image_id))),
|
92 |
+
objects=[COCO2017Person.Annotation.Object(
|
93 |
+
bbox=BBox( # `ann['bbox']` is in the format [left, top, width, height]
|
94 |
+
left=ann['bbox'][0],
|
95 |
+
top=ann['bbox'][1],
|
96 |
+
right=ann['bbox'][0] + ann['bbox'][2],
|
97 |
+
bottom=ann['bbox'][1] + ann['bbox'][3]
|
98 |
+
),
|
99 |
+
label=ann['category_id'])
|
100 |
+
for ann in annotation]
|
101 |
+
)
|
102 |
+
annotation.objects = [obj for obj in annotation.objects
|
103 |
+
if obj.label in [COCO2017.CATEGORY_TO_LABEL_DICT['person']]] # filtering label should refer to original `COCO2017` dataset
|
104 |
+
|
105 |
+
if len(annotation.objects) > 0:
|
106 |
+
self._image_id_to_annotation_dict[image_id] = annotation
|
107 |
+
|
108 |
+
ratio = float(image.width / image.height)
|
109 |
+
self._image_ratios.append(ratio)
|
110 |
+
|
111 |
+
self._image_ids = list(self._image_id_to_annotation_dict.keys())
|
112 |
+
|
113 |
+
with open(path_to_image_ids_pickle, 'wb') as f:
|
114 |
+
pickle.dump(self._image_ids, f)
|
115 |
+
|
116 |
+
with open(path_to_image_id_dict_pickle, 'wb') as f:
|
117 |
+
pickle.dump(self._image_id_to_annotation_dict, f)
|
118 |
+
|
119 |
+
with open(path_to_image_ratios_pickle, 'wb') as f:
|
120 |
+
pickle.dump(self.image_ratios, f)
|
121 |
+
|
122 |
+
def __len__(self) -> int:
|
123 |
+
return len(self._image_id_to_annotation_dict)
|
124 |
+
|
125 |
+
def __getitem__(self, index: int) -> Tuple[str, Tensor, Tensor, Tensor, Tensor]:
|
126 |
+
image_id = self._image_ids[index]
|
127 |
+
annotation = self._image_id_to_annotation_dict[image_id]
|
128 |
+
|
129 |
+
bboxes = [obj.bbox.tolist() for obj in annotation.objects]
|
130 |
+
labels = [COCO2017Person.CATEGORY_TO_LABEL_DICT[COCO2017.LABEL_TO_CATEGORY_DICT[obj.label]] for obj in annotation.objects] # mapping from original `COCO2017` dataset
|
131 |
+
|
132 |
+
bboxes = torch.tensor(bboxes, dtype=torch.float)
|
133 |
+
labels = torch.tensor(labels, dtype=torch.long)
|
134 |
+
|
135 |
+
image = Image.open(annotation.filename).convert('RGB') # for some grayscale images
|
136 |
+
|
137 |
+
# random flip on only training mode
|
138 |
+
if self._mode == COCO2017Person.Mode.TRAIN and random.random() > 0.5:
|
139 |
+
image = ImageOps.mirror(image)
|
140 |
+
bboxes[:, [0, 2]] = image.width - bboxes[:, [2, 0]] # index 0 and 2 represent `left` and `right` respectively
|
141 |
+
|
142 |
+
image, scale = COCO2017Person.preprocess(image, self._image_min_side, self._image_max_side)
|
143 |
+
scale = torch.tensor(scale, dtype=torch.float)
|
144 |
+
bboxes *= scale
|
145 |
+
|
146 |
+
return image_id, image, scale, bboxes, labels
|
147 |
+
|
148 |
+
def evaluate(self, path_to_results_dir: str, image_ids: List[str], bboxes: List[List[float]], classes: List[int], probs: List[float]) -> Tuple[float, str]:
|
149 |
+
self._write_results(path_to_results_dir, image_ids, bboxes, classes, probs)
|
150 |
+
|
151 |
+
annType = 'bbox'
|
152 |
+
path_to_coco_dir = os.path.join(self._path_to_data_dir, 'COCO')
|
153 |
+
path_to_annotations_dir = os.path.join(path_to_coco_dir, 'annotations')
|
154 |
+
path_to_annotation = os.path.join(path_to_annotations_dir, 'instances_val2017.json')
|
155 |
+
|
156 |
+
cocoGt = COCO(path_to_annotation)
|
157 |
+
cocoDt = cocoGt.loadRes(os.path.join(path_to_results_dir, 'results.json'))
|
158 |
+
|
159 |
+
cocoEval = COCOeval(cocoGt, cocoDt, annType)
|
160 |
+
cocoEval.params.catIds = COCO2017.CATEGORY_TO_LABEL_DICT['person'] # filtering label should refer to original `COCO2017` dataset
|
161 |
+
cocoEval.evaluate()
|
162 |
+
cocoEval.accumulate()
|
163 |
+
|
164 |
+
original_stdout = sys.stdout
|
165 |
+
string_stdout = StringIO()
|
166 |
+
sys.stdout = string_stdout
|
167 |
+
cocoEval.summarize()
|
168 |
+
sys.stdout = original_stdout
|
169 |
+
|
170 |
+
mean_ap = cocoEval.stats[0].item() # stats[0] records AP@[0.5:0.95]
|
171 |
+
detail = string_stdout.getvalue()
|
172 |
+
|
173 |
+
return mean_ap, detail
|
174 |
+
|
175 |
+
def _write_results(self, path_to_results_dir: str, image_ids: List[str], bboxes: List[List[float]], classes: List[int], probs: List[float]):
|
176 |
+
results = []
|
177 |
+
for image_id, bbox, cls, prob in zip(image_ids, bboxes, classes, probs):
|
178 |
+
results.append(
|
179 |
+
{
|
180 |
+
'image_id': int(image_id), # COCO evaluation requires `image_id` to be type `int`
|
181 |
+
'category_id': COCO2017.CATEGORY_TO_LABEL_DICT[COCO2017Person.LABEL_TO_CATEGORY_DICT[cls]], # mapping to original `COCO2017` dataset
|
182 |
+
'bbox': [ # format [left, top, width, height] is expected
|
183 |
+
bbox[0],
|
184 |
+
bbox[1],
|
185 |
+
bbox[2] - bbox[0],
|
186 |
+
bbox[3] - bbox[1]
|
187 |
+
],
|
188 |
+
'score': prob
|
189 |
+
}
|
190 |
+
)
|
191 |
+
|
192 |
+
with open(os.path.join(path_to_results_dir, 'results.json'), 'w') as f:
|
193 |
+
json.dump(results, f)
|
194 |
+
|
195 |
+
@property
|
196 |
+
def image_ratios(self) -> List[float]:
|
197 |
+
return self._image_ratios
|
198 |
+
|
199 |
+
@staticmethod
|
200 |
+
def num_classes() -> int:
|
201 |
+
return 2
|
dataset/voc2007.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import xml.etree.ElementTree as ET
|
4 |
+
from typing import List, Tuple
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch.utils.data
|
8 |
+
from PIL import Image, ImageOps
|
9 |
+
from torch import Tensor
|
10 |
+
|
11 |
+
from bbox import BBox
|
12 |
+
from dataset.base import Base
|
13 |
+
from voc_eval import voc_eval
|
14 |
+
|
15 |
+
|
16 |
+
class VOC2007(Base):
|
17 |
+
|
18 |
+
class Annotation(object):
|
19 |
+
class Object(object):
|
20 |
+
def __init__(self, name: str, difficult: bool, bbox: BBox):
|
21 |
+
super().__init__()
|
22 |
+
self.name = name
|
23 |
+
self.difficult = difficult
|
24 |
+
self.bbox = bbox
|
25 |
+
|
26 |
+
def __repr__(self) -> str:
|
27 |
+
return 'Object[name={:s}, difficult={!s}, bbox={!s}]'.format(
|
28 |
+
self.name, self.difficult, self.bbox)
|
29 |
+
|
30 |
+
def __init__(self, filename: str, objects: List[Object]):
|
31 |
+
super().__init__()
|
32 |
+
self.filename = filename
|
33 |
+
self.objects = objects
|
34 |
+
|
35 |
+
CATEGORY_TO_LABEL_DICT = {
|
36 |
+
'background': 0,
|
37 |
+
'aeroplane': 1, 'bicycle': 2, 'bird': 3, 'boat': 4, 'bottle': 5,
|
38 |
+
'bus': 6, 'car': 7, 'cat': 8, 'chair': 9, 'cow': 10,
|
39 |
+
'diningtable': 11, 'dog': 12, 'horse': 13, 'motorbike': 14, 'person': 15,
|
40 |
+
'pottedplant': 16, 'sheep': 17, 'sofa': 18, 'train': 19, 'tvmonitor': 20
|
41 |
+
}
|
42 |
+
|
43 |
+
LABEL_TO_CATEGORY_DICT = {v: k for k, v in CATEGORY_TO_LABEL_DICT.items()}
|
44 |
+
|
45 |
+
def __init__(self, path_to_data_dir: str, mode: Base.Mode, image_min_side: float, image_max_side: float):
|
46 |
+
super().__init__(path_to_data_dir, mode, image_min_side, image_max_side)
|
47 |
+
|
48 |
+
path_to_voc2007_dir = os.path.join(self._path_to_data_dir, 'VOCdevkit', 'VOC2007')
|
49 |
+
path_to_imagesets_main_dir = os.path.join(path_to_voc2007_dir, 'ImageSets', 'Main')
|
50 |
+
path_to_annotations_dir = os.path.join(path_to_voc2007_dir, 'Annotations')
|
51 |
+
self._path_to_jpeg_images_dir = os.path.join(path_to_voc2007_dir, 'JPEGImages')
|
52 |
+
|
53 |
+
if self._mode == VOC2007.Mode.TRAIN:
|
54 |
+
path_to_image_ids_txt = os.path.join(path_to_imagesets_main_dir, 'trainval.txt')
|
55 |
+
elif self._mode == VOC2007.Mode.EVAL:
|
56 |
+
path_to_image_ids_txt = os.path.join(path_to_imagesets_main_dir, 'test.txt')
|
57 |
+
else:
|
58 |
+
raise ValueError('invalid mode')
|
59 |
+
|
60 |
+
with open(path_to_image_ids_txt, 'r') as f:
|
61 |
+
lines = f.readlines()
|
62 |
+
self._image_ids = [line.rstrip() for line in lines]
|
63 |
+
|
64 |
+
self._image_id_to_annotation_dict = {}
|
65 |
+
self._image_ratios = []
|
66 |
+
|
67 |
+
for image_id in self._image_ids:
|
68 |
+
path_to_annotation_xml = os.path.join(path_to_annotations_dir, f'{image_id}.xml')
|
69 |
+
tree = ET.ElementTree(file=path_to_annotation_xml)
|
70 |
+
root = tree.getroot()
|
71 |
+
|
72 |
+
self._image_id_to_annotation_dict[image_id] = VOC2007.Annotation(
|
73 |
+
filename=root.find('filename').text,
|
74 |
+
objects=[VOC2007.Annotation.Object(
|
75 |
+
name=next(tag_object.iterfind('name')).text,
|
76 |
+
difficult=next(tag_object.iterfind('difficult')).text == '1',
|
77 |
+
bbox=BBox( # convert to 0-based pixel index
|
78 |
+
left=float(next(tag_object.iterfind('bndbox/xmin')).text) - 1,
|
79 |
+
top=float(next(tag_object.iterfind('bndbox/ymin')).text) - 1,
|
80 |
+
right=float(next(tag_object.iterfind('bndbox/xmax')).text) - 1,
|
81 |
+
bottom=float(next(tag_object.iterfind('bndbox/ymax')).text) - 1
|
82 |
+
)
|
83 |
+
) for tag_object in root.iterfind('object')]
|
84 |
+
)
|
85 |
+
|
86 |
+
width = int(root.find('size/width').text)
|
87 |
+
height = int(root.find('size/height').text)
|
88 |
+
ratio = float(width / height)
|
89 |
+
self._image_ratios.append(ratio)
|
90 |
+
|
91 |
+
def __len__(self) -> int:
|
92 |
+
return len(self._image_id_to_annotation_dict)
|
93 |
+
|
94 |
+
def __getitem__(self, index: int) -> Tuple[str, Tensor, Tensor, Tensor, Tensor]:
|
95 |
+
image_id = self._image_ids[index]
|
96 |
+
annotation = self._image_id_to_annotation_dict[image_id]
|
97 |
+
|
98 |
+
bboxes = [obj.bbox.tolist() for obj in annotation.objects if not obj.difficult]
|
99 |
+
labels = [VOC2007.CATEGORY_TO_LABEL_DICT[obj.name] for obj in annotation.objects if not obj.difficult]
|
100 |
+
|
101 |
+
bboxes = torch.tensor(bboxes, dtype=torch.float)
|
102 |
+
labels = torch.tensor(labels, dtype=torch.long)
|
103 |
+
|
104 |
+
image = Image.open(os.path.join(self._path_to_jpeg_images_dir, annotation.filename))
|
105 |
+
|
106 |
+
# random flip on only training mode
|
107 |
+
if self._mode == VOC2007.Mode.TRAIN and random.random() > 0.5:
|
108 |
+
image = ImageOps.mirror(image)
|
109 |
+
bboxes[:, [0, 2]] = image.width - bboxes[:, [2, 0]] # index 0 and 2 represent `left` and `right` respectively
|
110 |
+
|
111 |
+
image, scale = VOC2007.preprocess(image, self._image_min_side, self._image_max_side)
|
112 |
+
scale = torch.tensor(scale, dtype=torch.float)
|
113 |
+
bboxes *= scale
|
114 |
+
|
115 |
+
return image_id, image, scale, bboxes, labels
|
116 |
+
|
117 |
+
def evaluate(self, path_to_results_dir: str, image_ids: List[str], bboxes: List[List[float]], classes: List[int], probs: List[float]) -> Tuple[float, str]:
|
118 |
+
self._write_results(path_to_results_dir, image_ids, bboxes, classes, probs)
|
119 |
+
|
120 |
+
path_to_voc2007_dir = os.path.join(self._path_to_data_dir, 'VOCdevkit', 'VOC2007')
|
121 |
+
path_to_main_dir = os.path.join(path_to_voc2007_dir, 'ImageSets', 'Main')
|
122 |
+
path_to_annotations_dir = os.path.join(path_to_voc2007_dir, 'Annotations')
|
123 |
+
|
124 |
+
class_to_ap_dict = {}
|
125 |
+
for c in range(1, VOC2007.num_classes()):
|
126 |
+
category = VOC2007.LABEL_TO_CATEGORY_DICT[c]
|
127 |
+
try:
|
128 |
+
path_to_cache_dir = os.path.join('caches', 'voc2007')
|
129 |
+
os.makedirs(path_to_cache_dir, exist_ok=True)
|
130 |
+
_, _, ap = voc_eval(detpath=path_to_results_dir+'/comp3_det_test_{:s}.txt'.format(category),
|
131 |
+
annopath=path_to_annotations_dir+'/{:s}.xml',
|
132 |
+
imagesetfile=os.path.join(path_to_main_dir, 'test.txt'),
|
133 |
+
classname=category,
|
134 |
+
cachedir=path_to_cache_dir,
|
135 |
+
ovthresh=0.5,
|
136 |
+
use_07_metric=True)
|
137 |
+
except IndexError:
|
138 |
+
ap = 0
|
139 |
+
|
140 |
+
class_to_ap_dict[c] = ap
|
141 |
+
|
142 |
+
mean_ap = np.mean([v for k, v in class_to_ap_dict.items()]).item()
|
143 |
+
|
144 |
+
detail = ''
|
145 |
+
for c in range(1, VOC2007.num_classes()):
|
146 |
+
detail += '{:d}: {:s} AP = {:.4f}\n'.format(c, VOC2007.LABEL_TO_CATEGORY_DICT[c], class_to_ap_dict[c])
|
147 |
+
|
148 |
+
return mean_ap, detail
|
149 |
+
|
150 |
+
def _write_results(self, path_to_results_dir: str, image_ids: List[str], bboxes: List[List[float]], classes: List[int], probs: List[float]):
|
151 |
+
class_to_txt_files_dict = {}
|
152 |
+
for c in range(1, VOC2007.num_classes()):
|
153 |
+
class_to_txt_files_dict[c] = open(os.path.join(path_to_results_dir, 'comp3_det_test_{:s}.txt'.format(VOC2007.LABEL_TO_CATEGORY_DICT[c])), 'w')
|
154 |
+
|
155 |
+
for image_id, bbox, cls, prob in zip(image_ids, bboxes, classes, probs):
|
156 |
+
class_to_txt_files_dict[cls].write('{:s} {:f} {:f} {:f} {:f} {:f}\n'.format(image_id, prob,
|
157 |
+
bbox[0], bbox[1], bbox[2], bbox[3]))
|
158 |
+
|
159 |
+
for _, f in class_to_txt_files_dict.items():
|
160 |
+
f.close()
|
161 |
+
|
162 |
+
@property
|
163 |
+
def image_ratios(self) -> List[float]:
|
164 |
+
return self._image_ratios
|
165 |
+
|
166 |
+
@staticmethod
|
167 |
+
def num_classes() -> int:
|
168 |
+
return 21
|
dataset/voc2007_cat_dog.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import xml.etree.ElementTree as ET
|
4 |
+
from typing import List, Tuple
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch.utils.data
|
8 |
+
from PIL import Image, ImageOps
|
9 |
+
from torch import Tensor
|
10 |
+
|
11 |
+
from bbox import BBox
|
12 |
+
from dataset.base import Base
|
13 |
+
from voc_eval import voc_eval
|
14 |
+
|
15 |
+
|
16 |
+
class VOC2007CatDog(Base):
|
17 |
+
|
18 |
+
class Annotation(object):
|
19 |
+
class Object(object):
|
20 |
+
def __init__(self, name: str, difficult: bool, bbox: BBox):
|
21 |
+
super().__init__()
|
22 |
+
self.name = name
|
23 |
+
self.difficult = difficult
|
24 |
+
self.bbox = bbox
|
25 |
+
|
26 |
+
def __repr__(self) -> str:
|
27 |
+
return 'Object[name={:s}, difficult={!s}, bbox={!s}]'.format(
|
28 |
+
self.name, self.difficult, self.bbox)
|
29 |
+
|
30 |
+
def __init__(self, filename: str, objects: List[Object]):
|
31 |
+
super().__init__()
|
32 |
+
self.filename = filename
|
33 |
+
self.objects = objects
|
34 |
+
|
35 |
+
CATEGORY_TO_LABEL_DICT = {
|
36 |
+
'background': 0,
|
37 |
+
'cat': 1, 'dog': 2
|
38 |
+
}
|
39 |
+
|
40 |
+
LABEL_TO_CATEGORY_DICT = {v: k for k, v in CATEGORY_TO_LABEL_DICT.items()}
|
41 |
+
|
42 |
+
def __init__(self, path_to_data_dir: str, mode: Base.Mode, image_min_side: float, image_max_side: float):
|
43 |
+
super().__init__(path_to_data_dir, mode, image_min_side, image_max_side)
|
44 |
+
|
45 |
+
path_to_voc2007_dir = os.path.join(self._path_to_data_dir, 'VOCdevkit', 'VOC2007')
|
46 |
+
path_to_imagesets_main_dir = os.path.join(path_to_voc2007_dir, 'ImageSets', 'Main')
|
47 |
+
path_to_annotations_dir = os.path.join(path_to_voc2007_dir, 'Annotations')
|
48 |
+
self._path_to_jpeg_images_dir = os.path.join(path_to_voc2007_dir, 'JPEGImages')
|
49 |
+
|
50 |
+
if self._mode == VOC2007CatDog.Mode.TRAIN:
|
51 |
+
path_to_image_ids_txt = os.path.join(path_to_imagesets_main_dir, 'trainval.txt')
|
52 |
+
elif self._mode == VOC2007CatDog.Mode.EVAL:
|
53 |
+
path_to_image_ids_txt = os.path.join(path_to_imagesets_main_dir, 'test.txt')
|
54 |
+
else:
|
55 |
+
raise ValueError('invalid mode')
|
56 |
+
|
57 |
+
with open(path_to_image_ids_txt, 'r') as f:
|
58 |
+
lines = f.readlines()
|
59 |
+
image_ids = [line.rstrip() for line in lines]
|
60 |
+
|
61 |
+
self._image_id_to_annotation_dict = {}
|
62 |
+
self._image_ratios = []
|
63 |
+
|
64 |
+
for image_id in image_ids:
|
65 |
+
path_to_annotation_xml = os.path.join(path_to_annotations_dir, f'{image_id}.xml')
|
66 |
+
tree = ET.ElementTree(file=path_to_annotation_xml)
|
67 |
+
root = tree.getroot()
|
68 |
+
|
69 |
+
annotation = VOC2007CatDog.Annotation(
|
70 |
+
filename=root.find('filename').text,
|
71 |
+
objects=[VOC2007CatDog.Annotation.Object(
|
72 |
+
name=next(tag_object.iterfind('name')).text,
|
73 |
+
difficult=next(tag_object.iterfind('difficult')).text == '1',
|
74 |
+
bbox=BBox( # convert to 0-based pixel index
|
75 |
+
left=float(next(tag_object.iterfind('bndbox/xmin')).text) - 1,
|
76 |
+
top=float(next(tag_object.iterfind('bndbox/ymin')).text) - 1,
|
77 |
+
right=float(next(tag_object.iterfind('bndbox/xmax')).text) - 1,
|
78 |
+
bottom=float(next(tag_object.iterfind('bndbox/ymax')).text) - 1
|
79 |
+
)
|
80 |
+
) for tag_object in root.iterfind('object')]
|
81 |
+
)
|
82 |
+
annotation.objects = [obj for obj in annotation.objects if obj.name in ['cat', 'dog'] and not obj.difficult]
|
83 |
+
|
84 |
+
if len(annotation.objects) > 0:
|
85 |
+
self._image_id_to_annotation_dict[image_id] = annotation
|
86 |
+
|
87 |
+
width = int(root.find('size/width').text)
|
88 |
+
height = int(root.find('size/height').text)
|
89 |
+
ratio = float(width / height)
|
90 |
+
self._image_ratios.append(ratio)
|
91 |
+
|
92 |
+
self._image_ids = list(self._image_id_to_annotation_dict.keys())
|
93 |
+
|
94 |
+
def __len__(self) -> int:
|
95 |
+
return len(self._image_id_to_annotation_dict)
|
96 |
+
|
97 |
+
def __getitem__(self, index: int) -> Tuple[str, Tensor, Tensor, Tensor, Tensor]:
|
98 |
+
image_id = self._image_ids[index]
|
99 |
+
annotation = self._image_id_to_annotation_dict[image_id]
|
100 |
+
|
101 |
+
bboxes = [obj.bbox.tolist() for obj in annotation.objects]
|
102 |
+
labels = [VOC2007CatDog.CATEGORY_TO_LABEL_DICT[obj.name] for obj in annotation.objects]
|
103 |
+
|
104 |
+
bboxes = torch.tensor(bboxes, dtype=torch.float)
|
105 |
+
labels = torch.tensor(labels, dtype=torch.long)
|
106 |
+
|
107 |
+
image = Image.open(os.path.join(self._path_to_jpeg_images_dir, annotation.filename))
|
108 |
+
|
109 |
+
# random flip on only training mode
|
110 |
+
if self._mode == VOC2007CatDog.Mode.TRAIN and random.random() > 0.5:
|
111 |
+
image = ImageOps.mirror(image)
|
112 |
+
bboxes[:, [0, 2]] = image.width - bboxes[:, [2, 0]] # index 0 and 2 represent `left` and `right` respectively
|
113 |
+
|
114 |
+
image, scale = VOC2007CatDog.preprocess(image, self._image_min_side, self._image_max_side)
|
115 |
+
scale = torch.tensor(scale, dtype=torch.float)
|
116 |
+
bboxes *= scale
|
117 |
+
|
118 |
+
return image_id, image, scale, bboxes, labels
|
119 |
+
|
120 |
+
def evaluate(self, path_to_results_dir: str, image_ids: List[str], bboxes: List[List[float]], classes: List[int], probs: List[float]) -> Tuple[float, str]:
|
121 |
+
self._write_results(path_to_results_dir, image_ids, bboxes, classes, probs)
|
122 |
+
|
123 |
+
path_to_voc2007_dir = os.path.join(self._path_to_data_dir, 'VOCdevkit', 'VOC2007')
|
124 |
+
path_to_main_dir = os.path.join(path_to_voc2007_dir, 'ImageSets', 'Main')
|
125 |
+
path_to_annotations_dir = os.path.join(path_to_voc2007_dir, 'Annotations')
|
126 |
+
|
127 |
+
class_to_ap_dict = {}
|
128 |
+
for c in range(1, VOC2007CatDog.num_classes()):
|
129 |
+
category = VOC2007CatDog.LABEL_TO_CATEGORY_DICT[c]
|
130 |
+
try:
|
131 |
+
path_to_cache_dir = os.path.join('caches', 'voc2007-cat-dog')
|
132 |
+
os.makedirs(path_to_cache_dir, exist_ok=True)
|
133 |
+
_, _, ap = voc_eval(detpath=os.path.join(path_to_results_dir, 'comp3_det_test_{:s}.txt'.format(category)),
|
134 |
+
annopath=os.path.join(path_to_annotations_dir, '{:s}.xml'),
|
135 |
+
imagesetfile=os.path.join(path_to_main_dir, 'test.txt'),
|
136 |
+
classname=category,
|
137 |
+
cachedir=path_to_cache_dir,
|
138 |
+
ovthresh=0.5,
|
139 |
+
use_07_metric=True)
|
140 |
+
except IndexError:
|
141 |
+
ap = 0
|
142 |
+
|
143 |
+
class_to_ap_dict[c] = ap
|
144 |
+
|
145 |
+
mean_ap = np.mean([v for k, v in class_to_ap_dict.items()]).item()
|
146 |
+
|
147 |
+
detail = ''
|
148 |
+
for c in range(1, VOC2007CatDog.num_classes()):
|
149 |
+
detail += '{:d}: {:s} AP = {:.4f}\n'.format(c, VOC2007CatDog.LABEL_TO_CATEGORY_DICT[c], class_to_ap_dict[c])
|
150 |
+
|
151 |
+
return mean_ap, detail
|
152 |
+
|
153 |
+
def _write_results(self, path_to_results_dir: str, image_ids: List[str], bboxes: List[List[float]], classes: List[int], probs: List[float]):
|
154 |
+
class_to_txt_files_dict = {}
|
155 |
+
for c in range(1, VOC2007CatDog.num_classes()):
|
156 |
+
class_to_txt_files_dict[c] = open(os.path.join(path_to_results_dir, 'comp3_det_test_{:s}.txt'.format(VOC2007CatDog.LABEL_TO_CATEGORY_DICT[c])), 'w')
|
157 |
+
|
158 |
+
for image_id, bbox, cls, prob in zip(image_ids, bboxes, classes, probs):
|
159 |
+
class_to_txt_files_dict[cls].write('{:s} {:f} {:f} {:f} {:f} {:f}\n'.format(image_id, prob,
|
160 |
+
bbox[0], bbox[1], bbox[2], bbox[3]))
|
161 |
+
|
162 |
+
for _, f in class_to_txt_files_dict.items():
|
163 |
+
f.close()
|
164 |
+
|
165 |
+
@property
|
166 |
+
def image_ratios(self) -> List[float]:
|
167 |
+
return self._image_ratios
|
168 |
+
|
169 |
+
@staticmethod
|
170 |
+
def num_classes() -> int:
|
171 |
+
return 3
|
extension/functional.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from torch import Tensor
|
4 |
+
|
5 |
+
|
6 |
+
def beta_smooth_l1_loss(input: Tensor, target: Tensor, beta: float) -> Tensor:
|
7 |
+
diff = torch.abs(input - target)
|
8 |
+
loss = torch.where(diff < beta, 0.5 * diff ** 2 / beta, diff - 0.5 * beta)
|
9 |
+
loss = loss.sum() / (input.numel() + 1e-8)
|
10 |
+
return loss
|
extension/lr_scheduler.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
from torch.optim import Optimizer
|
4 |
+
from torch.optim.lr_scheduler import MultiStepLR
|
5 |
+
|
6 |
+
|
7 |
+
class WarmUpMultiStepLR(MultiStepLR):
|
8 |
+
def __init__(self, optimizer: Optimizer, milestones: List[int], gamma: float = 0.1,
|
9 |
+
factor: float = 0.3333, num_iters: int = 500, last_epoch: int = -1):
|
10 |
+
self.factor = factor
|
11 |
+
self.num_iters = num_iters
|
12 |
+
super().__init__(optimizer, milestones, gamma, last_epoch)
|
13 |
+
|
14 |
+
def get_lr(self) -> List[float]:
|
15 |
+
if self.last_epoch < self.num_iters:
|
16 |
+
alpha = self.last_epoch / self.num_iters
|
17 |
+
factor = (1 - self.factor) * alpha + self.factor
|
18 |
+
return [lr * factor for lr in super()._get_closed_form_lr()]
|
19 |
+
else:
|
20 |
+
factor = 1
|
21 |
+
return [lr for lr in super().get_lr()]
|
22 |
+
|
23 |
+
return [lr * factor for lr in super()._get_closed_form_lr()]
|
models/MobileNetSSD_deploy.caffemodel
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:761c86fbae3d8361dd454f7c740a964f62975ed32f4324b8b85994edec30f6af
|
3 |
+
size 23147564
|
models/MobileNetSSD_deploy.prototxt.txt
ADDED
@@ -0,0 +1,1912 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: "MobileNet-SSD"
|
2 |
+
input: "data"
|
3 |
+
input_shape {
|
4 |
+
dim: 1
|
5 |
+
dim: 3
|
6 |
+
dim: 300
|
7 |
+
dim: 300
|
8 |
+
}
|
9 |
+
layer {
|
10 |
+
name: "conv0"
|
11 |
+
type: "Convolution"
|
12 |
+
bottom: "data"
|
13 |
+
top: "conv0"
|
14 |
+
param {
|
15 |
+
lr_mult: 1.0
|
16 |
+
decay_mult: 1.0
|
17 |
+
}
|
18 |
+
param {
|
19 |
+
lr_mult: 2.0
|
20 |
+
decay_mult: 0.0
|
21 |
+
}
|
22 |
+
convolution_param {
|
23 |
+
num_output: 32
|
24 |
+
pad: 1
|
25 |
+
kernel_size: 3
|
26 |
+
stride: 2
|
27 |
+
weight_filler {
|
28 |
+
type: "msra"
|
29 |
+
}
|
30 |
+
bias_filler {
|
31 |
+
type: "constant"
|
32 |
+
value: 0.0
|
33 |
+
}
|
34 |
+
}
|
35 |
+
}
|
36 |
+
layer {
|
37 |
+
name: "conv0/relu"
|
38 |
+
type: "ReLU"
|
39 |
+
bottom: "conv0"
|
40 |
+
top: "conv0"
|
41 |
+
}
|
42 |
+
layer {
|
43 |
+
name: "conv1/dw"
|
44 |
+
type: "Convolution"
|
45 |
+
bottom: "conv0"
|
46 |
+
top: "conv1/dw"
|
47 |
+
param {
|
48 |
+
lr_mult: 1.0
|
49 |
+
decay_mult: 1.0
|
50 |
+
}
|
51 |
+
param {
|
52 |
+
lr_mult: 2.0
|
53 |
+
decay_mult: 0.0
|
54 |
+
}
|
55 |
+
convolution_param {
|
56 |
+
num_output: 32
|
57 |
+
pad: 1
|
58 |
+
kernel_size: 3
|
59 |
+
group: 32
|
60 |
+
engine: CAFFE
|
61 |
+
weight_filler {
|
62 |
+
type: "msra"
|
63 |
+
}
|
64 |
+
bias_filler {
|
65 |
+
type: "constant"
|
66 |
+
value: 0.0
|
67 |
+
}
|
68 |
+
}
|
69 |
+
}
|
70 |
+
layer {
|
71 |
+
name: "conv1/dw/relu"
|
72 |
+
type: "ReLU"
|
73 |
+
bottom: "conv1/dw"
|
74 |
+
top: "conv1/dw"
|
75 |
+
}
|
76 |
+
layer {
|
77 |
+
name: "conv1"
|
78 |
+
type: "Convolution"
|
79 |
+
bottom: "conv1/dw"
|
80 |
+
top: "conv1"
|
81 |
+
param {
|
82 |
+
lr_mult: 1.0
|
83 |
+
decay_mult: 1.0
|
84 |
+
}
|
85 |
+
param {
|
86 |
+
lr_mult: 2.0
|
87 |
+
decay_mult: 0.0
|
88 |
+
}
|
89 |
+
convolution_param {
|
90 |
+
num_output: 64
|
91 |
+
kernel_size: 1
|
92 |
+
weight_filler {
|
93 |
+
type: "msra"
|
94 |
+
}
|
95 |
+
bias_filler {
|
96 |
+
type: "constant"
|
97 |
+
value: 0.0
|
98 |
+
}
|
99 |
+
}
|
100 |
+
}
|
101 |
+
layer {
|
102 |
+
name: "conv1/relu"
|
103 |
+
type: "ReLU"
|
104 |
+
bottom: "conv1"
|
105 |
+
top: "conv1"
|
106 |
+
}
|
107 |
+
layer {
|
108 |
+
name: "conv2/dw"
|
109 |
+
type: "Convolution"
|
110 |
+
bottom: "conv1"
|
111 |
+
top: "conv2/dw"
|
112 |
+
param {
|
113 |
+
lr_mult: 1.0
|
114 |
+
decay_mult: 1.0
|
115 |
+
}
|
116 |
+
param {
|
117 |
+
lr_mult: 2.0
|
118 |
+
decay_mult: 0.0
|
119 |
+
}
|
120 |
+
convolution_param {
|
121 |
+
num_output: 64
|
122 |
+
pad: 1
|
123 |
+
kernel_size: 3
|
124 |
+
stride: 2
|
125 |
+
group: 64
|
126 |
+
engine: CAFFE
|
127 |
+
weight_filler {
|
128 |
+
type: "msra"
|
129 |
+
}
|
130 |
+
bias_filler {
|
131 |
+
type: "constant"
|
132 |
+
value: 0.0
|
133 |
+
}
|
134 |
+
}
|
135 |
+
}
|
136 |
+
layer {
|
137 |
+
name: "conv2/dw/relu"
|
138 |
+
type: "ReLU"
|
139 |
+
bottom: "conv2/dw"
|
140 |
+
top: "conv2/dw"
|
141 |
+
}
|
142 |
+
layer {
|
143 |
+
name: "conv2"
|
144 |
+
type: "Convolution"
|
145 |
+
bottom: "conv2/dw"
|
146 |
+
top: "conv2"
|
147 |
+
param {
|
148 |
+
lr_mult: 1.0
|
149 |
+
decay_mult: 1.0
|
150 |
+
}
|
151 |
+
param {
|
152 |
+
lr_mult: 2.0
|
153 |
+
decay_mult: 0.0
|
154 |
+
}
|
155 |
+
convolution_param {
|
156 |
+
num_output: 128
|
157 |
+
kernel_size: 1
|
158 |
+
weight_filler {
|
159 |
+
type: "msra"
|
160 |
+
}
|
161 |
+
bias_filler {
|
162 |
+
type: "constant"
|
163 |
+
value: 0.0
|
164 |
+
}
|
165 |
+
}
|
166 |
+
}
|
167 |
+
layer {
|
168 |
+
name: "conv2/relu"
|
169 |
+
type: "ReLU"
|
170 |
+
bottom: "conv2"
|
171 |
+
top: "conv2"
|
172 |
+
}
|
173 |
+
layer {
|
174 |
+
name: "conv3/dw"
|
175 |
+
type: "Convolution"
|
176 |
+
bottom: "conv2"
|
177 |
+
top: "conv3/dw"
|
178 |
+
param {
|
179 |
+
lr_mult: 1.0
|
180 |
+
decay_mult: 1.0
|
181 |
+
}
|
182 |
+
param {
|
183 |
+
lr_mult: 2.0
|
184 |
+
decay_mult: 0.0
|
185 |
+
}
|
186 |
+
convolution_param {
|
187 |
+
num_output: 128
|
188 |
+
pad: 1
|
189 |
+
kernel_size: 3
|
190 |
+
group: 128
|
191 |
+
engine: CAFFE
|
192 |
+
weight_filler {
|
193 |
+
type: "msra"
|
194 |
+
}
|
195 |
+
bias_filler {
|
196 |
+
type: "constant"
|
197 |
+
value: 0.0
|
198 |
+
}
|
199 |
+
}
|
200 |
+
}
|
201 |
+
layer {
|
202 |
+
name: "conv3/dw/relu"
|
203 |
+
type: "ReLU"
|
204 |
+
bottom: "conv3/dw"
|
205 |
+
top: "conv3/dw"
|
206 |
+
}
|
207 |
+
layer {
|
208 |
+
name: "conv3"
|
209 |
+
type: "Convolution"
|
210 |
+
bottom: "conv3/dw"
|
211 |
+
top: "conv3"
|
212 |
+
param {
|
213 |
+
lr_mult: 1.0
|
214 |
+
decay_mult: 1.0
|
215 |
+
}
|
216 |
+
param {
|
217 |
+
lr_mult: 2.0
|
218 |
+
decay_mult: 0.0
|
219 |
+
}
|
220 |
+
convolution_param {
|
221 |
+
num_output: 128
|
222 |
+
kernel_size: 1
|
223 |
+
weight_filler {
|
224 |
+
type: "msra"
|
225 |
+
}
|
226 |
+
bias_filler {
|
227 |
+
type: "constant"
|
228 |
+
value: 0.0
|
229 |
+
}
|
230 |
+
}
|
231 |
+
}
|
232 |
+
layer {
|
233 |
+
name: "conv3/relu"
|
234 |
+
type: "ReLU"
|
235 |
+
bottom: "conv3"
|
236 |
+
top: "conv3"
|
237 |
+
}
|
238 |
+
layer {
|
239 |
+
name: "conv4/dw"
|
240 |
+
type: "Convolution"
|
241 |
+
bottom: "conv3"
|
242 |
+
top: "conv4/dw"
|
243 |
+
param {
|
244 |
+
lr_mult: 1.0
|
245 |
+
decay_mult: 1.0
|
246 |
+
}
|
247 |
+
param {
|
248 |
+
lr_mult: 2.0
|
249 |
+
decay_mult: 0.0
|
250 |
+
}
|
251 |
+
convolution_param {
|
252 |
+
num_output: 128
|
253 |
+
pad: 1
|
254 |
+
kernel_size: 3
|
255 |
+
stride: 2
|
256 |
+
group: 128
|
257 |
+
engine: CAFFE
|
258 |
+
weight_filler {
|
259 |
+
type: "msra"
|
260 |
+
}
|
261 |
+
bias_filler {
|
262 |
+
type: "constant"
|
263 |
+
value: 0.0
|
264 |
+
}
|
265 |
+
}
|
266 |
+
}
|
267 |
+
layer {
|
268 |
+
name: "conv4/dw/relu"
|
269 |
+
type: "ReLU"
|
270 |
+
bottom: "conv4/dw"
|
271 |
+
top: "conv4/dw"
|
272 |
+
}
|
273 |
+
layer {
|
274 |
+
name: "conv4"
|
275 |
+
type: "Convolution"
|
276 |
+
bottom: "conv4/dw"
|
277 |
+
top: "conv4"
|
278 |
+
param {
|
279 |
+
lr_mult: 1.0
|
280 |
+
decay_mult: 1.0
|
281 |
+
}
|
282 |
+
param {
|
283 |
+
lr_mult: 2.0
|
284 |
+
decay_mult: 0.0
|
285 |
+
}
|
286 |
+
convolution_param {
|
287 |
+
num_output: 256
|
288 |
+
kernel_size: 1
|
289 |
+
weight_filler {
|
290 |
+
type: "msra"
|
291 |
+
}
|
292 |
+
bias_filler {
|
293 |
+
type: "constant"
|
294 |
+
value: 0.0
|
295 |
+
}
|
296 |
+
}
|
297 |
+
}
|
298 |
+
layer {
|
299 |
+
name: "conv4/relu"
|
300 |
+
type: "ReLU"
|
301 |
+
bottom: "conv4"
|
302 |
+
top: "conv4"
|
303 |
+
}
|
304 |
+
layer {
|
305 |
+
name: "conv5/dw"
|
306 |
+
type: "Convolution"
|
307 |
+
bottom: "conv4"
|
308 |
+
top: "conv5/dw"
|
309 |
+
param {
|
310 |
+
lr_mult: 1.0
|
311 |
+
decay_mult: 1.0
|
312 |
+
}
|
313 |
+
param {
|
314 |
+
lr_mult: 2.0
|
315 |
+
decay_mult: 0.0
|
316 |
+
}
|
317 |
+
convolution_param {
|
318 |
+
num_output: 256
|
319 |
+
pad: 1
|
320 |
+
kernel_size: 3
|
321 |
+
group: 256
|
322 |
+
engine: CAFFE
|
323 |
+
weight_filler {
|
324 |
+
type: "msra"
|
325 |
+
}
|
326 |
+
bias_filler {
|
327 |
+
type: "constant"
|
328 |
+
value: 0.0
|
329 |
+
}
|
330 |
+
}
|
331 |
+
}
|
332 |
+
layer {
|
333 |
+
name: "conv5/dw/relu"
|
334 |
+
type: "ReLU"
|
335 |
+
bottom: "conv5/dw"
|
336 |
+
top: "conv5/dw"
|
337 |
+
}
|
338 |
+
layer {
|
339 |
+
name: "conv5"
|
340 |
+
type: "Convolution"
|
341 |
+
bottom: "conv5/dw"
|
342 |
+
top: "conv5"
|
343 |
+
param {
|
344 |
+
lr_mult: 1.0
|
345 |
+
decay_mult: 1.0
|
346 |
+
}
|
347 |
+
param {
|
348 |
+
lr_mult: 2.0
|
349 |
+
decay_mult: 0.0
|
350 |
+
}
|
351 |
+
convolution_param {
|
352 |
+
num_output: 256
|
353 |
+
kernel_size: 1
|
354 |
+
weight_filler {
|
355 |
+
type: "msra"
|
356 |
+
}
|
357 |
+
bias_filler {
|
358 |
+
type: "constant"
|
359 |
+
value: 0.0
|
360 |
+
}
|
361 |
+
}
|
362 |
+
}
|
363 |
+
layer {
|
364 |
+
name: "conv5/relu"
|
365 |
+
type: "ReLU"
|
366 |
+
bottom: "conv5"
|
367 |
+
top: "conv5"
|
368 |
+
}
|
369 |
+
layer {
|
370 |
+
name: "conv6/dw"
|
371 |
+
type: "Convolution"
|
372 |
+
bottom: "conv5"
|
373 |
+
top: "conv6/dw"
|
374 |
+
param {
|
375 |
+
lr_mult: 1.0
|
376 |
+
decay_mult: 1.0
|
377 |
+
}
|
378 |
+
param {
|
379 |
+
lr_mult: 2.0
|
380 |
+
decay_mult: 0.0
|
381 |
+
}
|
382 |
+
convolution_param {
|
383 |
+
num_output: 256
|
384 |
+
pad: 1
|
385 |
+
kernel_size: 3
|
386 |
+
stride: 2
|
387 |
+
group: 256
|
388 |
+
engine: CAFFE
|
389 |
+
weight_filler {
|
390 |
+
type: "msra"
|
391 |
+
}
|
392 |
+
bias_filler {
|
393 |
+
type: "constant"
|
394 |
+
value: 0.0
|
395 |
+
}
|
396 |
+
}
|
397 |
+
}
|
398 |
+
layer {
|
399 |
+
name: "conv6/dw/relu"
|
400 |
+
type: "ReLU"
|
401 |
+
bottom: "conv6/dw"
|
402 |
+
top: "conv6/dw"
|
403 |
+
}
|
404 |
+
layer {
|
405 |
+
name: "conv6"
|
406 |
+
type: "Convolution"
|
407 |
+
bottom: "conv6/dw"
|
408 |
+
top: "conv6"
|
409 |
+
param {
|
410 |
+
lr_mult: 1.0
|
411 |
+
decay_mult: 1.0
|
412 |
+
}
|
413 |
+
param {
|
414 |
+
lr_mult: 2.0
|
415 |
+
decay_mult: 0.0
|
416 |
+
}
|
417 |
+
convolution_param {
|
418 |
+
num_output: 512
|
419 |
+
kernel_size: 1
|
420 |
+
weight_filler {
|
421 |
+
type: "msra"
|
422 |
+
}
|
423 |
+
bias_filler {
|
424 |
+
type: "constant"
|
425 |
+
value: 0.0
|
426 |
+
}
|
427 |
+
}
|
428 |
+
}
|
429 |
+
layer {
|
430 |
+
name: "conv6/relu"
|
431 |
+
type: "ReLU"
|
432 |
+
bottom: "conv6"
|
433 |
+
top: "conv6"
|
434 |
+
}
|
435 |
+
layer {
|
436 |
+
name: "conv7/dw"
|
437 |
+
type: "Convolution"
|
438 |
+
bottom: "conv6"
|
439 |
+
top: "conv7/dw"
|
440 |
+
param {
|
441 |
+
lr_mult: 1.0
|
442 |
+
decay_mult: 1.0
|
443 |
+
}
|
444 |
+
param {
|
445 |
+
lr_mult: 2.0
|
446 |
+
decay_mult: 0.0
|
447 |
+
}
|
448 |
+
convolution_param {
|
449 |
+
num_output: 512
|
450 |
+
pad: 1
|
451 |
+
kernel_size: 3
|
452 |
+
group: 512
|
453 |
+
engine: CAFFE
|
454 |
+
weight_filler {
|
455 |
+
type: "msra"
|
456 |
+
}
|
457 |
+
bias_filler {
|
458 |
+
type: "constant"
|
459 |
+
value: 0.0
|
460 |
+
}
|
461 |
+
}
|
462 |
+
}
|
463 |
+
layer {
|
464 |
+
name: "conv7/dw/relu"
|
465 |
+
type: "ReLU"
|
466 |
+
bottom: "conv7/dw"
|
467 |
+
top: "conv7/dw"
|
468 |
+
}
|
469 |
+
layer {
|
470 |
+
name: "conv7"
|
471 |
+
type: "Convolution"
|
472 |
+
bottom: "conv7/dw"
|
473 |
+
top: "conv7"
|
474 |
+
param {
|
475 |
+
lr_mult: 1.0
|
476 |
+
decay_mult: 1.0
|
477 |
+
}
|
478 |
+
param {
|
479 |
+
lr_mult: 2.0
|
480 |
+
decay_mult: 0.0
|
481 |
+
}
|
482 |
+
convolution_param {
|
483 |
+
num_output: 512
|
484 |
+
kernel_size: 1
|
485 |
+
weight_filler {
|
486 |
+
type: "msra"
|
487 |
+
}
|
488 |
+
bias_filler {
|
489 |
+
type: "constant"
|
490 |
+
value: 0.0
|
491 |
+
}
|
492 |
+
}
|
493 |
+
}
|
494 |
+
layer {
|
495 |
+
name: "conv7/relu"
|
496 |
+
type: "ReLU"
|
497 |
+
bottom: "conv7"
|
498 |
+
top: "conv7"
|
499 |
+
}
|
500 |
+
layer {
|
501 |
+
name: "conv8/dw"
|
502 |
+
type: "Convolution"
|
503 |
+
bottom: "conv7"
|
504 |
+
top: "conv8/dw"
|
505 |
+
param {
|
506 |
+
lr_mult: 1.0
|
507 |
+
decay_mult: 1.0
|
508 |
+
}
|
509 |
+
param {
|
510 |
+
lr_mult: 2.0
|
511 |
+
decay_mult: 0.0
|
512 |
+
}
|
513 |
+
convolution_param {
|
514 |
+
num_output: 512
|
515 |
+
pad: 1
|
516 |
+
kernel_size: 3
|
517 |
+
group: 512
|
518 |
+
engine: CAFFE
|
519 |
+
weight_filler {
|
520 |
+
type: "msra"
|
521 |
+
}
|
522 |
+
bias_filler {
|
523 |
+
type: "constant"
|
524 |
+
value: 0.0
|
525 |
+
}
|
526 |
+
}
|
527 |
+
}
|
528 |
+
layer {
|
529 |
+
name: "conv8/dw/relu"
|
530 |
+
type: "ReLU"
|
531 |
+
bottom: "conv8/dw"
|
532 |
+
top: "conv8/dw"
|
533 |
+
}
|
534 |
+
layer {
|
535 |
+
name: "conv8"
|
536 |
+
type: "Convolution"
|
537 |
+
bottom: "conv8/dw"
|
538 |
+
top: "conv8"
|
539 |
+
param {
|
540 |
+
lr_mult: 1.0
|
541 |
+
decay_mult: 1.0
|
542 |
+
}
|
543 |
+
param {
|
544 |
+
lr_mult: 2.0
|
545 |
+
decay_mult: 0.0
|
546 |
+
}
|
547 |
+
convolution_param {
|
548 |
+
num_output: 512
|
549 |
+
kernel_size: 1
|
550 |
+
weight_filler {
|
551 |
+
type: "msra"
|
552 |
+
}
|
553 |
+
bias_filler {
|
554 |
+
type: "constant"
|
555 |
+
value: 0.0
|
556 |
+
}
|
557 |
+
}
|
558 |
+
}
|
559 |
+
layer {
|
560 |
+
name: "conv8/relu"
|
561 |
+
type: "ReLU"
|
562 |
+
bottom: "conv8"
|
563 |
+
top: "conv8"
|
564 |
+
}
|
565 |
+
layer {
|
566 |
+
name: "conv9/dw"
|
567 |
+
type: "Convolution"
|
568 |
+
bottom: "conv8"
|
569 |
+
top: "conv9/dw"
|
570 |
+
param {
|
571 |
+
lr_mult: 1.0
|
572 |
+
decay_mult: 1.0
|
573 |
+
}
|
574 |
+
param {
|
575 |
+
lr_mult: 2.0
|
576 |
+
decay_mult: 0.0
|
577 |
+
}
|
578 |
+
convolution_param {
|
579 |
+
num_output: 512
|
580 |
+
pad: 1
|
581 |
+
kernel_size: 3
|
582 |
+
group: 512
|
583 |
+
engine: CAFFE
|
584 |
+
weight_filler {
|
585 |
+
type: "msra"
|
586 |
+
}
|
587 |
+
bias_filler {
|
588 |
+
type: "constant"
|
589 |
+
value: 0.0
|
590 |
+
}
|
591 |
+
}
|
592 |
+
}
|
593 |
+
layer {
|
594 |
+
name: "conv9/dw/relu"
|
595 |
+
type: "ReLU"
|
596 |
+
bottom: "conv9/dw"
|
597 |
+
top: "conv9/dw"
|
598 |
+
}
|
599 |
+
layer {
|
600 |
+
name: "conv9"
|
601 |
+
type: "Convolution"
|
602 |
+
bottom: "conv9/dw"
|
603 |
+
top: "conv9"
|
604 |
+
param {
|
605 |
+
lr_mult: 1.0
|
606 |
+
decay_mult: 1.0
|
607 |
+
}
|
608 |
+
param {
|
609 |
+
lr_mult: 2.0
|
610 |
+
decay_mult: 0.0
|
611 |
+
}
|
612 |
+
convolution_param {
|
613 |
+
num_output: 512
|
614 |
+
kernel_size: 1
|
615 |
+
weight_filler {
|
616 |
+
type: "msra"
|
617 |
+
}
|
618 |
+
bias_filler {
|
619 |
+
type: "constant"
|
620 |
+
value: 0.0
|
621 |
+
}
|
622 |
+
}
|
623 |
+
}
|
624 |
+
layer {
|
625 |
+
name: "conv9/relu"
|
626 |
+
type: "ReLU"
|
627 |
+
bottom: "conv9"
|
628 |
+
top: "conv9"
|
629 |
+
}
|
630 |
+
layer {
|
631 |
+
name: "conv10/dw"
|
632 |
+
type: "Convolution"
|
633 |
+
bottom: "conv9"
|
634 |
+
top: "conv10/dw"
|
635 |
+
param {
|
636 |
+
lr_mult: 1.0
|
637 |
+
decay_mult: 1.0
|
638 |
+
}
|
639 |
+
param {
|
640 |
+
lr_mult: 2.0
|
641 |
+
decay_mult: 0.0
|
642 |
+
}
|
643 |
+
convolution_param {
|
644 |
+
num_output: 512
|
645 |
+
pad: 1
|
646 |
+
kernel_size: 3
|
647 |
+
group: 512
|
648 |
+
engine: CAFFE
|
649 |
+
weight_filler {
|
650 |
+
type: "msra"
|
651 |
+
}
|
652 |
+
bias_filler {
|
653 |
+
type: "constant"
|
654 |
+
value: 0.0
|
655 |
+
}
|
656 |
+
}
|
657 |
+
}
|
658 |
+
layer {
|
659 |
+
name: "conv10/dw/relu"
|
660 |
+
type: "ReLU"
|
661 |
+
bottom: "conv10/dw"
|
662 |
+
top: "conv10/dw"
|
663 |
+
}
|
664 |
+
layer {
|
665 |
+
name: "conv10"
|
666 |
+
type: "Convolution"
|
667 |
+
bottom: "conv10/dw"
|
668 |
+
top: "conv10"
|
669 |
+
param {
|
670 |
+
lr_mult: 1.0
|
671 |
+
decay_mult: 1.0
|
672 |
+
}
|
673 |
+
param {
|
674 |
+
lr_mult: 2.0
|
675 |
+
decay_mult: 0.0
|
676 |
+
}
|
677 |
+
convolution_param {
|
678 |
+
num_output: 512
|
679 |
+
kernel_size: 1
|
680 |
+
weight_filler {
|
681 |
+
type: "msra"
|
682 |
+
}
|
683 |
+
bias_filler {
|
684 |
+
type: "constant"
|
685 |
+
value: 0.0
|
686 |
+
}
|
687 |
+
}
|
688 |
+
}
|
689 |
+
layer {
|
690 |
+
name: "conv10/relu"
|
691 |
+
type: "ReLU"
|
692 |
+
bottom: "conv10"
|
693 |
+
top: "conv10"
|
694 |
+
}
|
695 |
+
layer {
|
696 |
+
name: "conv11/dw"
|
697 |
+
type: "Convolution"
|
698 |
+
bottom: "conv10"
|
699 |
+
top: "conv11/dw"
|
700 |
+
param {
|
701 |
+
lr_mult: 1.0
|
702 |
+
decay_mult: 1.0
|
703 |
+
}
|
704 |
+
param {
|
705 |
+
lr_mult: 2.0
|
706 |
+
decay_mult: 0.0
|
707 |
+
}
|
708 |
+
convolution_param {
|
709 |
+
num_output: 512
|
710 |
+
pad: 1
|
711 |
+
kernel_size: 3
|
712 |
+
group: 512
|
713 |
+
engine: CAFFE
|
714 |
+
weight_filler {
|
715 |
+
type: "msra"
|
716 |
+
}
|
717 |
+
bias_filler {
|
718 |
+
type: "constant"
|
719 |
+
value: 0.0
|
720 |
+
}
|
721 |
+
}
|
722 |
+
}
|
723 |
+
layer {
|
724 |
+
name: "conv11/dw/relu"
|
725 |
+
type: "ReLU"
|
726 |
+
bottom: "conv11/dw"
|
727 |
+
top: "conv11/dw"
|
728 |
+
}
|
729 |
+
layer {
|
730 |
+
name: "conv11"
|
731 |
+
type: "Convolution"
|
732 |
+
bottom: "conv11/dw"
|
733 |
+
top: "conv11"
|
734 |
+
param {
|
735 |
+
lr_mult: 1.0
|
736 |
+
decay_mult: 1.0
|
737 |
+
}
|
738 |
+
param {
|
739 |
+
lr_mult: 2.0
|
740 |
+
decay_mult: 0.0
|
741 |
+
}
|
742 |
+
convolution_param {
|
743 |
+
num_output: 512
|
744 |
+
kernel_size: 1
|
745 |
+
weight_filler {
|
746 |
+
type: "msra"
|
747 |
+
}
|
748 |
+
bias_filler {
|
749 |
+
type: "constant"
|
750 |
+
value: 0.0
|
751 |
+
}
|
752 |
+
}
|
753 |
+
}
|
754 |
+
layer {
|
755 |
+
name: "conv11/relu"
|
756 |
+
type: "ReLU"
|
757 |
+
bottom: "conv11"
|
758 |
+
top: "conv11"
|
759 |
+
}
|
760 |
+
layer {
|
761 |
+
name: "conv12/dw"
|
762 |
+
type: "Convolution"
|
763 |
+
bottom: "conv11"
|
764 |
+
top: "conv12/dw"
|
765 |
+
param {
|
766 |
+
lr_mult: 1.0
|
767 |
+
decay_mult: 1.0
|
768 |
+
}
|
769 |
+
param {
|
770 |
+
lr_mult: 2.0
|
771 |
+
decay_mult: 0.0
|
772 |
+
}
|
773 |
+
convolution_param {
|
774 |
+
num_output: 512
|
775 |
+
pad: 1
|
776 |
+
kernel_size: 3
|
777 |
+
stride: 2
|
778 |
+
group: 512
|
779 |
+
engine: CAFFE
|
780 |
+
weight_filler {
|
781 |
+
type: "msra"
|
782 |
+
}
|
783 |
+
bias_filler {
|
784 |
+
type: "constant"
|
785 |
+
value: 0.0
|
786 |
+
}
|
787 |
+
}
|
788 |
+
}
|
789 |
+
layer {
|
790 |
+
name: "conv12/dw/relu"
|
791 |
+
type: "ReLU"
|
792 |
+
bottom: "conv12/dw"
|
793 |
+
top: "conv12/dw"
|
794 |
+
}
|
795 |
+
layer {
|
796 |
+
name: "conv12"
|
797 |
+
type: "Convolution"
|
798 |
+
bottom: "conv12/dw"
|
799 |
+
top: "conv12"
|
800 |
+
param {
|
801 |
+
lr_mult: 1.0
|
802 |
+
decay_mult: 1.0
|
803 |
+
}
|
804 |
+
param {
|
805 |
+
lr_mult: 2.0
|
806 |
+
decay_mult: 0.0
|
807 |
+
}
|
808 |
+
convolution_param {
|
809 |
+
num_output: 1024
|
810 |
+
kernel_size: 1
|
811 |
+
weight_filler {
|
812 |
+
type: "msra"
|
813 |
+
}
|
814 |
+
bias_filler {
|
815 |
+
type: "constant"
|
816 |
+
value: 0.0
|
817 |
+
}
|
818 |
+
}
|
819 |
+
}
|
820 |
+
layer {
|
821 |
+
name: "conv12/relu"
|
822 |
+
type: "ReLU"
|
823 |
+
bottom: "conv12"
|
824 |
+
top: "conv12"
|
825 |
+
}
|
826 |
+
layer {
|
827 |
+
name: "conv13/dw"
|
828 |
+
type: "Convolution"
|
829 |
+
bottom: "conv12"
|
830 |
+
top: "conv13/dw"
|
831 |
+
param {
|
832 |
+
lr_mult: 1.0
|
833 |
+
decay_mult: 1.0
|
834 |
+
}
|
835 |
+
param {
|
836 |
+
lr_mult: 2.0
|
837 |
+
decay_mult: 0.0
|
838 |
+
}
|
839 |
+
convolution_param {
|
840 |
+
num_output: 1024
|
841 |
+
pad: 1
|
842 |
+
kernel_size: 3
|
843 |
+
group: 1024
|
844 |
+
engine: CAFFE
|
845 |
+
weight_filler {
|
846 |
+
type: "msra"
|
847 |
+
}
|
848 |
+
bias_filler {
|
849 |
+
type: "constant"
|
850 |
+
value: 0.0
|
851 |
+
}
|
852 |
+
}
|
853 |
+
}
|
854 |
+
layer {
|
855 |
+
name: "conv13/dw/relu"
|
856 |
+
type: "ReLU"
|
857 |
+
bottom: "conv13/dw"
|
858 |
+
top: "conv13/dw"
|
859 |
+
}
|
860 |
+
layer {
|
861 |
+
name: "conv13"
|
862 |
+
type: "Convolution"
|
863 |
+
bottom: "conv13/dw"
|
864 |
+
top: "conv13"
|
865 |
+
param {
|
866 |
+
lr_mult: 1.0
|
867 |
+
decay_mult: 1.0
|
868 |
+
}
|
869 |
+
param {
|
870 |
+
lr_mult: 2.0
|
871 |
+
decay_mult: 0.0
|
872 |
+
}
|
873 |
+
convolution_param {
|
874 |
+
num_output: 1024
|
875 |
+
kernel_size: 1
|
876 |
+
weight_filler {
|
877 |
+
type: "msra"
|
878 |
+
}
|
879 |
+
bias_filler {
|
880 |
+
type: "constant"
|
881 |
+
value: 0.0
|
882 |
+
}
|
883 |
+
}
|
884 |
+
}
|
885 |
+
layer {
|
886 |
+
name: "conv13/relu"
|
887 |
+
type: "ReLU"
|
888 |
+
bottom: "conv13"
|
889 |
+
top: "conv13"
|
890 |
+
}
|
891 |
+
layer {
|
892 |
+
name: "conv14_1"
|
893 |
+
type: "Convolution"
|
894 |
+
bottom: "conv13"
|
895 |
+
top: "conv14_1"
|
896 |
+
param {
|
897 |
+
lr_mult: 1.0
|
898 |
+
decay_mult: 1.0
|
899 |
+
}
|
900 |
+
param {
|
901 |
+
lr_mult: 2.0
|
902 |
+
decay_mult: 0.0
|
903 |
+
}
|
904 |
+
convolution_param {
|
905 |
+
num_output: 256
|
906 |
+
kernel_size: 1
|
907 |
+
weight_filler {
|
908 |
+
type: "msra"
|
909 |
+
}
|
910 |
+
bias_filler {
|
911 |
+
type: "constant"
|
912 |
+
value: 0.0
|
913 |
+
}
|
914 |
+
}
|
915 |
+
}
|
916 |
+
layer {
|
917 |
+
name: "conv14_1/relu"
|
918 |
+
type: "ReLU"
|
919 |
+
bottom: "conv14_1"
|
920 |
+
top: "conv14_1"
|
921 |
+
}
|
922 |
+
layer {
|
923 |
+
name: "conv14_2"
|
924 |
+
type: "Convolution"
|
925 |
+
bottom: "conv14_1"
|
926 |
+
top: "conv14_2"
|
927 |
+
param {
|
928 |
+
lr_mult: 1.0
|
929 |
+
decay_mult: 1.0
|
930 |
+
}
|
931 |
+
param {
|
932 |
+
lr_mult: 2.0
|
933 |
+
decay_mult: 0.0
|
934 |
+
}
|
935 |
+
convolution_param {
|
936 |
+
num_output: 512
|
937 |
+
pad: 1
|
938 |
+
kernel_size: 3
|
939 |
+
stride: 2
|
940 |
+
weight_filler {
|
941 |
+
type: "msra"
|
942 |
+
}
|
943 |
+
bias_filler {
|
944 |
+
type: "constant"
|
945 |
+
value: 0.0
|
946 |
+
}
|
947 |
+
}
|
948 |
+
}
|
949 |
+
layer {
|
950 |
+
name: "conv14_2/relu"
|
951 |
+
type: "ReLU"
|
952 |
+
bottom: "conv14_2"
|
953 |
+
top: "conv14_2"
|
954 |
+
}
|
955 |
+
layer {
|
956 |
+
name: "conv15_1"
|
957 |
+
type: "Convolution"
|
958 |
+
bottom: "conv14_2"
|
959 |
+
top: "conv15_1"
|
960 |
+
param {
|
961 |
+
lr_mult: 1.0
|
962 |
+
decay_mult: 1.0
|
963 |
+
}
|
964 |
+
param {
|
965 |
+
lr_mult: 2.0
|
966 |
+
decay_mult: 0.0
|
967 |
+
}
|
968 |
+
convolution_param {
|
969 |
+
num_output: 128
|
970 |
+
kernel_size: 1
|
971 |
+
weight_filler {
|
972 |
+
type: "msra"
|
973 |
+
}
|
974 |
+
bias_filler {
|
975 |
+
type: "constant"
|
976 |
+
value: 0.0
|
977 |
+
}
|
978 |
+
}
|
979 |
+
}
|
980 |
+
layer {
|
981 |
+
name: "conv15_1/relu"
|
982 |
+
type: "ReLU"
|
983 |
+
bottom: "conv15_1"
|
984 |
+
top: "conv15_1"
|
985 |
+
}
|
986 |
+
layer {
|
987 |
+
name: "conv15_2"
|
988 |
+
type: "Convolution"
|
989 |
+
bottom: "conv15_1"
|
990 |
+
top: "conv15_2"
|
991 |
+
param {
|
992 |
+
lr_mult: 1.0
|
993 |
+
decay_mult: 1.0
|
994 |
+
}
|
995 |
+
param {
|
996 |
+
lr_mult: 2.0
|
997 |
+
decay_mult: 0.0
|
998 |
+
}
|
999 |
+
convolution_param {
|
1000 |
+
num_output: 256
|
1001 |
+
pad: 1
|
1002 |
+
kernel_size: 3
|
1003 |
+
stride: 2
|
1004 |
+
weight_filler {
|
1005 |
+
type: "msra"
|
1006 |
+
}
|
1007 |
+
bias_filler {
|
1008 |
+
type: "constant"
|
1009 |
+
value: 0.0
|
1010 |
+
}
|
1011 |
+
}
|
1012 |
+
}
|
1013 |
+
layer {
|
1014 |
+
name: "conv15_2/relu"
|
1015 |
+
type: "ReLU"
|
1016 |
+
bottom: "conv15_2"
|
1017 |
+
top: "conv15_2"
|
1018 |
+
}
|
1019 |
+
layer {
|
1020 |
+
name: "conv16_1"
|
1021 |
+
type: "Convolution"
|
1022 |
+
bottom: "conv15_2"
|
1023 |
+
top: "conv16_1"
|
1024 |
+
param {
|
1025 |
+
lr_mult: 1.0
|
1026 |
+
decay_mult: 1.0
|
1027 |
+
}
|
1028 |
+
param {
|
1029 |
+
lr_mult: 2.0
|
1030 |
+
decay_mult: 0.0
|
1031 |
+
}
|
1032 |
+
convolution_param {
|
1033 |
+
num_output: 128
|
1034 |
+
kernel_size: 1
|
1035 |
+
weight_filler {
|
1036 |
+
type: "msra"
|
1037 |
+
}
|
1038 |
+
bias_filler {
|
1039 |
+
type: "constant"
|
1040 |
+
value: 0.0
|
1041 |
+
}
|
1042 |
+
}
|
1043 |
+
}
|
1044 |
+
layer {
|
1045 |
+
name: "conv16_1/relu"
|
1046 |
+
type: "ReLU"
|
1047 |
+
bottom: "conv16_1"
|
1048 |
+
top: "conv16_1"
|
1049 |
+
}
|
1050 |
+
layer {
|
1051 |
+
name: "conv16_2"
|
1052 |
+
type: "Convolution"
|
1053 |
+
bottom: "conv16_1"
|
1054 |
+
top: "conv16_2"
|
1055 |
+
param {
|
1056 |
+
lr_mult: 1.0
|
1057 |
+
decay_mult: 1.0
|
1058 |
+
}
|
1059 |
+
param {
|
1060 |
+
lr_mult: 2.0
|
1061 |
+
decay_mult: 0.0
|
1062 |
+
}
|
1063 |
+
convolution_param {
|
1064 |
+
num_output: 256
|
1065 |
+
pad: 1
|
1066 |
+
kernel_size: 3
|
1067 |
+
stride: 2
|
1068 |
+
weight_filler {
|
1069 |
+
type: "msra"
|
1070 |
+
}
|
1071 |
+
bias_filler {
|
1072 |
+
type: "constant"
|
1073 |
+
value: 0.0
|
1074 |
+
}
|
1075 |
+
}
|
1076 |
+
}
|
1077 |
+
layer {
|
1078 |
+
name: "conv16_2/relu"
|
1079 |
+
type: "ReLU"
|
1080 |
+
bottom: "conv16_2"
|
1081 |
+
top: "conv16_2"
|
1082 |
+
}
|
1083 |
+
layer {
|
1084 |
+
name: "conv17_1"
|
1085 |
+
type: "Convolution"
|
1086 |
+
bottom: "conv16_2"
|
1087 |
+
top: "conv17_1"
|
1088 |
+
param {
|
1089 |
+
lr_mult: 1.0
|
1090 |
+
decay_mult: 1.0
|
1091 |
+
}
|
1092 |
+
param {
|
1093 |
+
lr_mult: 2.0
|
1094 |
+
decay_mult: 0.0
|
1095 |
+
}
|
1096 |
+
convolution_param {
|
1097 |
+
num_output: 64
|
1098 |
+
kernel_size: 1
|
1099 |
+
weight_filler {
|
1100 |
+
type: "msra"
|
1101 |
+
}
|
1102 |
+
bias_filler {
|
1103 |
+
type: "constant"
|
1104 |
+
value: 0.0
|
1105 |
+
}
|
1106 |
+
}
|
1107 |
+
}
|
1108 |
+
layer {
|
1109 |
+
name: "conv17_1/relu"
|
1110 |
+
type: "ReLU"
|
1111 |
+
bottom: "conv17_1"
|
1112 |
+
top: "conv17_1"
|
1113 |
+
}
|
1114 |
+
layer {
|
1115 |
+
name: "conv17_2"
|
1116 |
+
type: "Convolution"
|
1117 |
+
bottom: "conv17_1"
|
1118 |
+
top: "conv17_2"
|
1119 |
+
param {
|
1120 |
+
lr_mult: 1.0
|
1121 |
+
decay_mult: 1.0
|
1122 |
+
}
|
1123 |
+
param {
|
1124 |
+
lr_mult: 2.0
|
1125 |
+
decay_mult: 0.0
|
1126 |
+
}
|
1127 |
+
convolution_param {
|
1128 |
+
num_output: 128
|
1129 |
+
pad: 1
|
1130 |
+
kernel_size: 3
|
1131 |
+
stride: 2
|
1132 |
+
weight_filler {
|
1133 |
+
type: "msra"
|
1134 |
+
}
|
1135 |
+
bias_filler {
|
1136 |
+
type: "constant"
|
1137 |
+
value: 0.0
|
1138 |
+
}
|
1139 |
+
}
|
1140 |
+
}
|
1141 |
+
layer {
|
1142 |
+
name: "conv17_2/relu"
|
1143 |
+
type: "ReLU"
|
1144 |
+
bottom: "conv17_2"
|
1145 |
+
top: "conv17_2"
|
1146 |
+
}
|
1147 |
+
layer {
|
1148 |
+
name: "conv11_mbox_loc"
|
1149 |
+
type: "Convolution"
|
1150 |
+
bottom: "conv11"
|
1151 |
+
top: "conv11_mbox_loc"
|
1152 |
+
param {
|
1153 |
+
lr_mult: 1.0
|
1154 |
+
decay_mult: 1.0
|
1155 |
+
}
|
1156 |
+
param {
|
1157 |
+
lr_mult: 2.0
|
1158 |
+
decay_mult: 0.0
|
1159 |
+
}
|
1160 |
+
convolution_param {
|
1161 |
+
num_output: 12
|
1162 |
+
kernel_size: 1
|
1163 |
+
weight_filler {
|
1164 |
+
type: "msra"
|
1165 |
+
}
|
1166 |
+
bias_filler {
|
1167 |
+
type: "constant"
|
1168 |
+
value: 0.0
|
1169 |
+
}
|
1170 |
+
}
|
1171 |
+
}
|
1172 |
+
layer {
|
1173 |
+
name: "conv11_mbox_loc_perm"
|
1174 |
+
type: "Permute"
|
1175 |
+
bottom: "conv11_mbox_loc"
|
1176 |
+
top: "conv11_mbox_loc_perm"
|
1177 |
+
permute_param {
|
1178 |
+
order: 0
|
1179 |
+
order: 2
|
1180 |
+
order: 3
|
1181 |
+
order: 1
|
1182 |
+
}
|
1183 |
+
}
|
1184 |
+
layer {
|
1185 |
+
name: "conv11_mbox_loc_flat"
|
1186 |
+
type: "Flatten"
|
1187 |
+
bottom: "conv11_mbox_loc_perm"
|
1188 |
+
top: "conv11_mbox_loc_flat"
|
1189 |
+
flatten_param {
|
1190 |
+
axis: 1
|
1191 |
+
}
|
1192 |
+
}
|
1193 |
+
layer {
|
1194 |
+
name: "conv11_mbox_conf"
|
1195 |
+
type: "Convolution"
|
1196 |
+
bottom: "conv11"
|
1197 |
+
top: "conv11_mbox_conf"
|
1198 |
+
param {
|
1199 |
+
lr_mult: 1.0
|
1200 |
+
decay_mult: 1.0
|
1201 |
+
}
|
1202 |
+
param {
|
1203 |
+
lr_mult: 2.0
|
1204 |
+
decay_mult: 0.0
|
1205 |
+
}
|
1206 |
+
convolution_param {
|
1207 |
+
num_output: 63
|
1208 |
+
kernel_size: 1
|
1209 |
+
weight_filler {
|
1210 |
+
type: "msra"
|
1211 |
+
}
|
1212 |
+
bias_filler {
|
1213 |
+
type: "constant"
|
1214 |
+
value: 0.0
|
1215 |
+
}
|
1216 |
+
}
|
1217 |
+
}
|
1218 |
+
layer {
|
1219 |
+
name: "conv11_mbox_conf_perm"
|
1220 |
+
type: "Permute"
|
1221 |
+
bottom: "conv11_mbox_conf"
|
1222 |
+
top: "conv11_mbox_conf_perm"
|
1223 |
+
permute_param {
|
1224 |
+
order: 0
|
1225 |
+
order: 2
|
1226 |
+
order: 3
|
1227 |
+
order: 1
|
1228 |
+
}
|
1229 |
+
}
|
1230 |
+
layer {
|
1231 |
+
name: "conv11_mbox_conf_flat"
|
1232 |
+
type: "Flatten"
|
1233 |
+
bottom: "conv11_mbox_conf_perm"
|
1234 |
+
top: "conv11_mbox_conf_flat"
|
1235 |
+
flatten_param {
|
1236 |
+
axis: 1
|
1237 |
+
}
|
1238 |
+
}
|
1239 |
+
layer {
|
1240 |
+
name: "conv11_mbox_priorbox"
|
1241 |
+
type: "PriorBox"
|
1242 |
+
bottom: "conv11"
|
1243 |
+
bottom: "data"
|
1244 |
+
top: "conv11_mbox_priorbox"
|
1245 |
+
prior_box_param {
|
1246 |
+
min_size: 60.0
|
1247 |
+
aspect_ratio: 2.0
|
1248 |
+
flip: true
|
1249 |
+
clip: false
|
1250 |
+
variance: 0.1
|
1251 |
+
variance: 0.1
|
1252 |
+
variance: 0.2
|
1253 |
+
variance: 0.2
|
1254 |
+
offset: 0.5
|
1255 |
+
}
|
1256 |
+
}
|
1257 |
+
layer {
|
1258 |
+
name: "conv13_mbox_loc"
|
1259 |
+
type: "Convolution"
|
1260 |
+
bottom: "conv13"
|
1261 |
+
top: "conv13_mbox_loc"
|
1262 |
+
param {
|
1263 |
+
lr_mult: 1.0
|
1264 |
+
decay_mult: 1.0
|
1265 |
+
}
|
1266 |
+
param {
|
1267 |
+
lr_mult: 2.0
|
1268 |
+
decay_mult: 0.0
|
1269 |
+
}
|
1270 |
+
convolution_param {
|
1271 |
+
num_output: 24
|
1272 |
+
kernel_size: 1
|
1273 |
+
weight_filler {
|
1274 |
+
type: "msra"
|
1275 |
+
}
|
1276 |
+
bias_filler {
|
1277 |
+
type: "constant"
|
1278 |
+
value: 0.0
|
1279 |
+
}
|
1280 |
+
}
|
1281 |
+
}
|
1282 |
+
layer {
|
1283 |
+
name: "conv13_mbox_loc_perm"
|
1284 |
+
type: "Permute"
|
1285 |
+
bottom: "conv13_mbox_loc"
|
1286 |
+
top: "conv13_mbox_loc_perm"
|
1287 |
+
permute_param {
|
1288 |
+
order: 0
|
1289 |
+
order: 2
|
1290 |
+
order: 3
|
1291 |
+
order: 1
|
1292 |
+
}
|
1293 |
+
}
|
1294 |
+
layer {
|
1295 |
+
name: "conv13_mbox_loc_flat"
|
1296 |
+
type: "Flatten"
|
1297 |
+
bottom: "conv13_mbox_loc_perm"
|
1298 |
+
top: "conv13_mbox_loc_flat"
|
1299 |
+
flatten_param {
|
1300 |
+
axis: 1
|
1301 |
+
}
|
1302 |
+
}
|
1303 |
+
layer {
|
1304 |
+
name: "conv13_mbox_conf"
|
1305 |
+
type: "Convolution"
|
1306 |
+
bottom: "conv13"
|
1307 |
+
top: "conv13_mbox_conf"
|
1308 |
+
param {
|
1309 |
+
lr_mult: 1.0
|
1310 |
+
decay_mult: 1.0
|
1311 |
+
}
|
1312 |
+
param {
|
1313 |
+
lr_mult: 2.0
|
1314 |
+
decay_mult: 0.0
|
1315 |
+
}
|
1316 |
+
convolution_param {
|
1317 |
+
num_output: 126
|
1318 |
+
kernel_size: 1
|
1319 |
+
weight_filler {
|
1320 |
+
type: "msra"
|
1321 |
+
}
|
1322 |
+
bias_filler {
|
1323 |
+
type: "constant"
|
1324 |
+
value: 0.0
|
1325 |
+
}
|
1326 |
+
}
|
1327 |
+
}
|
1328 |
+
layer {
|
1329 |
+
name: "conv13_mbox_conf_perm"
|
1330 |
+
type: "Permute"
|
1331 |
+
bottom: "conv13_mbox_conf"
|
1332 |
+
top: "conv13_mbox_conf_perm"
|
1333 |
+
permute_param {
|
1334 |
+
order: 0
|
1335 |
+
order: 2
|
1336 |
+
order: 3
|
1337 |
+
order: 1
|
1338 |
+
}
|
1339 |
+
}
|
1340 |
+
layer {
|
1341 |
+
name: "conv13_mbox_conf_flat"
|
1342 |
+
type: "Flatten"
|
1343 |
+
bottom: "conv13_mbox_conf_perm"
|
1344 |
+
top: "conv13_mbox_conf_flat"
|
1345 |
+
flatten_param {
|
1346 |
+
axis: 1
|
1347 |
+
}
|
1348 |
+
}
|
1349 |
+
layer {
|
1350 |
+
name: "conv13_mbox_priorbox"
|
1351 |
+
type: "PriorBox"
|
1352 |
+
bottom: "conv13"
|
1353 |
+
bottom: "data"
|
1354 |
+
top: "conv13_mbox_priorbox"
|
1355 |
+
prior_box_param {
|
1356 |
+
min_size: 105.0
|
1357 |
+
max_size: 150.0
|
1358 |
+
aspect_ratio: 2.0
|
1359 |
+
aspect_ratio: 3.0
|
1360 |
+
flip: true
|
1361 |
+
clip: false
|
1362 |
+
variance: 0.1
|
1363 |
+
variance: 0.1
|
1364 |
+
variance: 0.2
|
1365 |
+
variance: 0.2
|
1366 |
+
offset: 0.5
|
1367 |
+
}
|
1368 |
+
}
|
1369 |
+
layer {
|
1370 |
+
name: "conv14_2_mbox_loc"
|
1371 |
+
type: "Convolution"
|
1372 |
+
bottom: "conv14_2"
|
1373 |
+
top: "conv14_2_mbox_loc"
|
1374 |
+
param {
|
1375 |
+
lr_mult: 1.0
|
1376 |
+
decay_mult: 1.0
|
1377 |
+
}
|
1378 |
+
param {
|
1379 |
+
lr_mult: 2.0
|
1380 |
+
decay_mult: 0.0
|
1381 |
+
}
|
1382 |
+
convolution_param {
|
1383 |
+
num_output: 24
|
1384 |
+
kernel_size: 1
|
1385 |
+
weight_filler {
|
1386 |
+
type: "msra"
|
1387 |
+
}
|
1388 |
+
bias_filler {
|
1389 |
+
type: "constant"
|
1390 |
+
value: 0.0
|
1391 |
+
}
|
1392 |
+
}
|
1393 |
+
}
|
1394 |
+
layer {
|
1395 |
+
name: "conv14_2_mbox_loc_perm"
|
1396 |
+
type: "Permute"
|
1397 |
+
bottom: "conv14_2_mbox_loc"
|
1398 |
+
top: "conv14_2_mbox_loc_perm"
|
1399 |
+
permute_param {
|
1400 |
+
order: 0
|
1401 |
+
order: 2
|
1402 |
+
order: 3
|
1403 |
+
order: 1
|
1404 |
+
}
|
1405 |
+
}
|
1406 |
+
layer {
|
1407 |
+
name: "conv14_2_mbox_loc_flat"
|
1408 |
+
type: "Flatten"
|
1409 |
+
bottom: "conv14_2_mbox_loc_perm"
|
1410 |
+
top: "conv14_2_mbox_loc_flat"
|
1411 |
+
flatten_param {
|
1412 |
+
axis: 1
|
1413 |
+
}
|
1414 |
+
}
|
1415 |
+
layer {
|
1416 |
+
name: "conv14_2_mbox_conf"
|
1417 |
+
type: "Convolution"
|
1418 |
+
bottom: "conv14_2"
|
1419 |
+
top: "conv14_2_mbox_conf"
|
1420 |
+
param {
|
1421 |
+
lr_mult: 1.0
|
1422 |
+
decay_mult: 1.0
|
1423 |
+
}
|
1424 |
+
param {
|
1425 |
+
lr_mult: 2.0
|
1426 |
+
decay_mult: 0.0
|
1427 |
+
}
|
1428 |
+
convolution_param {
|
1429 |
+
num_output: 126
|
1430 |
+
kernel_size: 1
|
1431 |
+
weight_filler {
|
1432 |
+
type: "msra"
|
1433 |
+
}
|
1434 |
+
bias_filler {
|
1435 |
+
type: "constant"
|
1436 |
+
value: 0.0
|
1437 |
+
}
|
1438 |
+
}
|
1439 |
+
}
|
1440 |
+
layer {
|
1441 |
+
name: "conv14_2_mbox_conf_perm"
|
1442 |
+
type: "Permute"
|
1443 |
+
bottom: "conv14_2_mbox_conf"
|
1444 |
+
top: "conv14_2_mbox_conf_perm"
|
1445 |
+
permute_param {
|
1446 |
+
order: 0
|
1447 |
+
order: 2
|
1448 |
+
order: 3
|
1449 |
+
order: 1
|
1450 |
+
}
|
1451 |
+
}
|
1452 |
+
layer {
|
1453 |
+
name: "conv14_2_mbox_conf_flat"
|
1454 |
+
type: "Flatten"
|
1455 |
+
bottom: "conv14_2_mbox_conf_perm"
|
1456 |
+
top: "conv14_2_mbox_conf_flat"
|
1457 |
+
flatten_param {
|
1458 |
+
axis: 1
|
1459 |
+
}
|
1460 |
+
}
|
1461 |
+
layer {
|
1462 |
+
name: "conv14_2_mbox_priorbox"
|
1463 |
+
type: "PriorBox"
|
1464 |
+
bottom: "conv14_2"
|
1465 |
+
bottom: "data"
|
1466 |
+
top: "conv14_2_mbox_priorbox"
|
1467 |
+
prior_box_param {
|
1468 |
+
min_size: 150.0
|
1469 |
+
max_size: 195.0
|
1470 |
+
aspect_ratio: 2.0
|
1471 |
+
aspect_ratio: 3.0
|
1472 |
+
flip: true
|
1473 |
+
clip: false
|
1474 |
+
variance: 0.1
|
1475 |
+
variance: 0.1
|
1476 |
+
variance: 0.2
|
1477 |
+
variance: 0.2
|
1478 |
+
offset: 0.5
|
1479 |
+
}
|
1480 |
+
}
|
1481 |
+
layer {
|
1482 |
+
name: "conv15_2_mbox_loc"
|
1483 |
+
type: "Convolution"
|
1484 |
+
bottom: "conv15_2"
|
1485 |
+
top: "conv15_2_mbox_loc"
|
1486 |
+
param {
|
1487 |
+
lr_mult: 1.0
|
1488 |
+
decay_mult: 1.0
|
1489 |
+
}
|
1490 |
+
param {
|
1491 |
+
lr_mult: 2.0
|
1492 |
+
decay_mult: 0.0
|
1493 |
+
}
|
1494 |
+
convolution_param {
|
1495 |
+
num_output: 24
|
1496 |
+
kernel_size: 1
|
1497 |
+
weight_filler {
|
1498 |
+
type: "msra"
|
1499 |
+
}
|
1500 |
+
bias_filler {
|
1501 |
+
type: "constant"
|
1502 |
+
value: 0.0
|
1503 |
+
}
|
1504 |
+
}
|
1505 |
+
}
|
1506 |
+
layer {
|
1507 |
+
name: "conv15_2_mbox_loc_perm"
|
1508 |
+
type: "Permute"
|
1509 |
+
bottom: "conv15_2_mbox_loc"
|
1510 |
+
top: "conv15_2_mbox_loc_perm"
|
1511 |
+
permute_param {
|
1512 |
+
order: 0
|
1513 |
+
order: 2
|
1514 |
+
order: 3
|
1515 |
+
order: 1
|
1516 |
+
}
|
1517 |
+
}
|
1518 |
+
layer {
|
1519 |
+
name: "conv15_2_mbox_loc_flat"
|
1520 |
+
type: "Flatten"
|
1521 |
+
bottom: "conv15_2_mbox_loc_perm"
|
1522 |
+
top: "conv15_2_mbox_loc_flat"
|
1523 |
+
flatten_param {
|
1524 |
+
axis: 1
|
1525 |
+
}
|
1526 |
+
}
|
1527 |
+
layer {
|
1528 |
+
name: "conv15_2_mbox_conf"
|
1529 |
+
type: "Convolution"
|
1530 |
+
bottom: "conv15_2"
|
1531 |
+
top: "conv15_2_mbox_conf"
|
1532 |
+
param {
|
1533 |
+
lr_mult: 1.0
|
1534 |
+
decay_mult: 1.0
|
1535 |
+
}
|
1536 |
+
param {
|
1537 |
+
lr_mult: 2.0
|
1538 |
+
decay_mult: 0.0
|
1539 |
+
}
|
1540 |
+
convolution_param {
|
1541 |
+
num_output: 126
|
1542 |
+
kernel_size: 1
|
1543 |
+
weight_filler {
|
1544 |
+
type: "msra"
|
1545 |
+
}
|
1546 |
+
bias_filler {
|
1547 |
+
type: "constant"
|
1548 |
+
value: 0.0
|
1549 |
+
}
|
1550 |
+
}
|
1551 |
+
}
|
1552 |
+
layer {
|
1553 |
+
name: "conv15_2_mbox_conf_perm"
|
1554 |
+
type: "Permute"
|
1555 |
+
bottom: "conv15_2_mbox_conf"
|
1556 |
+
top: "conv15_2_mbox_conf_perm"
|
1557 |
+
permute_param {
|
1558 |
+
order: 0
|
1559 |
+
order: 2
|
1560 |
+
order: 3
|
1561 |
+
order: 1
|
1562 |
+
}
|
1563 |
+
}
|
1564 |
+
layer {
|
1565 |
+
name: "conv15_2_mbox_conf_flat"
|
1566 |
+
type: "Flatten"
|
1567 |
+
bottom: "conv15_2_mbox_conf_perm"
|
1568 |
+
top: "conv15_2_mbox_conf_flat"
|
1569 |
+
flatten_param {
|
1570 |
+
axis: 1
|
1571 |
+
}
|
1572 |
+
}
|
1573 |
+
layer {
|
1574 |
+
name: "conv15_2_mbox_priorbox"
|
1575 |
+
type: "PriorBox"
|
1576 |
+
bottom: "conv15_2"
|
1577 |
+
bottom: "data"
|
1578 |
+
top: "conv15_2_mbox_priorbox"
|
1579 |
+
prior_box_param {
|
1580 |
+
min_size: 195.0
|
1581 |
+
max_size: 240.0
|
1582 |
+
aspect_ratio: 2.0
|
1583 |
+
aspect_ratio: 3.0
|
1584 |
+
flip: true
|
1585 |
+
clip: false
|
1586 |
+
variance: 0.1
|
1587 |
+
variance: 0.1
|
1588 |
+
variance: 0.2
|
1589 |
+
variance: 0.2
|
1590 |
+
offset: 0.5
|
1591 |
+
}
|
1592 |
+
}
|
1593 |
+
layer {
|
1594 |
+
name: "conv16_2_mbox_loc"
|
1595 |
+
type: "Convolution"
|
1596 |
+
bottom: "conv16_2"
|
1597 |
+
top: "conv16_2_mbox_loc"
|
1598 |
+
param {
|
1599 |
+
lr_mult: 1.0
|
1600 |
+
decay_mult: 1.0
|
1601 |
+
}
|
1602 |
+
param {
|
1603 |
+
lr_mult: 2.0
|
1604 |
+
decay_mult: 0.0
|
1605 |
+
}
|
1606 |
+
convolution_param {
|
1607 |
+
num_output: 24
|
1608 |
+
kernel_size: 1
|
1609 |
+
weight_filler {
|
1610 |
+
type: "msra"
|
1611 |
+
}
|
1612 |
+
bias_filler {
|
1613 |
+
type: "constant"
|
1614 |
+
value: 0.0
|
1615 |
+
}
|
1616 |
+
}
|
1617 |
+
}
|
1618 |
+
layer {
|
1619 |
+
name: "conv16_2_mbox_loc_perm"
|
1620 |
+
type: "Permute"
|
1621 |
+
bottom: "conv16_2_mbox_loc"
|
1622 |
+
top: "conv16_2_mbox_loc_perm"
|
1623 |
+
permute_param {
|
1624 |
+
order: 0
|
1625 |
+
order: 2
|
1626 |
+
order: 3
|
1627 |
+
order: 1
|
1628 |
+
}
|
1629 |
+
}
|
1630 |
+
layer {
|
1631 |
+
name: "conv16_2_mbox_loc_flat"
|
1632 |
+
type: "Flatten"
|
1633 |
+
bottom: "conv16_2_mbox_loc_perm"
|
1634 |
+
top: "conv16_2_mbox_loc_flat"
|
1635 |
+
flatten_param {
|
1636 |
+
axis: 1
|
1637 |
+
}
|
1638 |
+
}
|
1639 |
+
layer {
|
1640 |
+
name: "conv16_2_mbox_conf"
|
1641 |
+
type: "Convolution"
|
1642 |
+
bottom: "conv16_2"
|
1643 |
+
top: "conv16_2_mbox_conf"
|
1644 |
+
param {
|
1645 |
+
lr_mult: 1.0
|
1646 |
+
decay_mult: 1.0
|
1647 |
+
}
|
1648 |
+
param {
|
1649 |
+
lr_mult: 2.0
|
1650 |
+
decay_mult: 0.0
|
1651 |
+
}
|
1652 |
+
convolution_param {
|
1653 |
+
num_output: 126
|
1654 |
+
kernel_size: 1
|
1655 |
+
weight_filler {
|
1656 |
+
type: "msra"
|
1657 |
+
}
|
1658 |
+
bias_filler {
|
1659 |
+
type: "constant"
|
1660 |
+
value: 0.0
|
1661 |
+
}
|
1662 |
+
}
|
1663 |
+
}
|
1664 |
+
layer {
|
1665 |
+
name: "conv16_2_mbox_conf_perm"
|
1666 |
+
type: "Permute"
|
1667 |
+
bottom: "conv16_2_mbox_conf"
|
1668 |
+
top: "conv16_2_mbox_conf_perm"
|
1669 |
+
permute_param {
|
1670 |
+
order: 0
|
1671 |
+
order: 2
|
1672 |
+
order: 3
|
1673 |
+
order: 1
|
1674 |
+
}
|
1675 |
+
}
|
1676 |
+
layer {
|
1677 |
+
name: "conv16_2_mbox_conf_flat"
|
1678 |
+
type: "Flatten"
|
1679 |
+
bottom: "conv16_2_mbox_conf_perm"
|
1680 |
+
top: "conv16_2_mbox_conf_flat"
|
1681 |
+
flatten_param {
|
1682 |
+
axis: 1
|
1683 |
+
}
|
1684 |
+
}
|
1685 |
+
layer {
|
1686 |
+
name: "conv16_2_mbox_priorbox"
|
1687 |
+
type: "PriorBox"
|
1688 |
+
bottom: "conv16_2"
|
1689 |
+
bottom: "data"
|
1690 |
+
top: "conv16_2_mbox_priorbox"
|
1691 |
+
prior_box_param {
|
1692 |
+
min_size: 240.0
|
1693 |
+
max_size: 285.0
|
1694 |
+
aspect_ratio: 2.0
|
1695 |
+
aspect_ratio: 3.0
|
1696 |
+
flip: true
|
1697 |
+
clip: false
|
1698 |
+
variance: 0.1
|
1699 |
+
variance: 0.1
|
1700 |
+
variance: 0.2
|
1701 |
+
variance: 0.2
|
1702 |
+
offset: 0.5
|
1703 |
+
}
|
1704 |
+
}
|
1705 |
+
layer {
|
1706 |
+
name: "conv17_2_mbox_loc"
|
1707 |
+
type: "Convolution"
|
1708 |
+
bottom: "conv17_2"
|
1709 |
+
top: "conv17_2_mbox_loc"
|
1710 |
+
param {
|
1711 |
+
lr_mult: 1.0
|
1712 |
+
decay_mult: 1.0
|
1713 |
+
}
|
1714 |
+
param {
|
1715 |
+
lr_mult: 2.0
|
1716 |
+
decay_mult: 0.0
|
1717 |
+
}
|
1718 |
+
convolution_param {
|
1719 |
+
num_output: 24
|
1720 |
+
kernel_size: 1
|
1721 |
+
weight_filler {
|
1722 |
+
type: "msra"
|
1723 |
+
}
|
1724 |
+
bias_filler {
|
1725 |
+
type: "constant"
|
1726 |
+
value: 0.0
|
1727 |
+
}
|
1728 |
+
}
|
1729 |
+
}
|
1730 |
+
layer {
|
1731 |
+
name: "conv17_2_mbox_loc_perm"
|
1732 |
+
type: "Permute"
|
1733 |
+
bottom: "conv17_2_mbox_loc"
|
1734 |
+
top: "conv17_2_mbox_loc_perm"
|
1735 |
+
permute_param {
|
1736 |
+
order: 0
|
1737 |
+
order: 2
|
1738 |
+
order: 3
|
1739 |
+
order: 1
|
1740 |
+
}
|
1741 |
+
}
|
1742 |
+
layer {
|
1743 |
+
name: "conv17_2_mbox_loc_flat"
|
1744 |
+
type: "Flatten"
|
1745 |
+
bottom: "conv17_2_mbox_loc_perm"
|
1746 |
+
top: "conv17_2_mbox_loc_flat"
|
1747 |
+
flatten_param {
|
1748 |
+
axis: 1
|
1749 |
+
}
|
1750 |
+
}
|
1751 |
+
layer {
|
1752 |
+
name: "conv17_2_mbox_conf"
|
1753 |
+
type: "Convolution"
|
1754 |
+
bottom: "conv17_2"
|
1755 |
+
top: "conv17_2_mbox_conf"
|
1756 |
+
param {
|
1757 |
+
lr_mult: 1.0
|
1758 |
+
decay_mult: 1.0
|
1759 |
+
}
|
1760 |
+
param {
|
1761 |
+
lr_mult: 2.0
|
1762 |
+
decay_mult: 0.0
|
1763 |
+
}
|
1764 |
+
convolution_param {
|
1765 |
+
num_output: 126
|
1766 |
+
kernel_size: 1
|
1767 |
+
weight_filler {
|
1768 |
+
type: "msra"
|
1769 |
+
}
|
1770 |
+
bias_filler {
|
1771 |
+
type: "constant"
|
1772 |
+
value: 0.0
|
1773 |
+
}
|
1774 |
+
}
|
1775 |
+
}
|
1776 |
+
layer {
|
1777 |
+
name: "conv17_2_mbox_conf_perm"
|
1778 |
+
type: "Permute"
|
1779 |
+
bottom: "conv17_2_mbox_conf"
|
1780 |
+
top: "conv17_2_mbox_conf_perm"
|
1781 |
+
permute_param {
|
1782 |
+
order: 0
|
1783 |
+
order: 2
|
1784 |
+
order: 3
|
1785 |
+
order: 1
|
1786 |
+
}
|
1787 |
+
}
|
1788 |
+
layer {
|
1789 |
+
name: "conv17_2_mbox_conf_flat"
|
1790 |
+
type: "Flatten"
|
1791 |
+
bottom: "conv17_2_mbox_conf_perm"
|
1792 |
+
top: "conv17_2_mbox_conf_flat"
|
1793 |
+
flatten_param {
|
1794 |
+
axis: 1
|
1795 |
+
}
|
1796 |
+
}
|
1797 |
+
layer {
|
1798 |
+
name: "conv17_2_mbox_priorbox"
|
1799 |
+
type: "PriorBox"
|
1800 |
+
bottom: "conv17_2"
|
1801 |
+
bottom: "data"
|
1802 |
+
top: "conv17_2_mbox_priorbox"
|
1803 |
+
prior_box_param {
|
1804 |
+
min_size: 285.0
|
1805 |
+
max_size: 300.0
|
1806 |
+
aspect_ratio: 2.0
|
1807 |
+
aspect_ratio: 3.0
|
1808 |
+
flip: true
|
1809 |
+
clip: false
|
1810 |
+
variance: 0.1
|
1811 |
+
variance: 0.1
|
1812 |
+
variance: 0.2
|
1813 |
+
variance: 0.2
|
1814 |
+
offset: 0.5
|
1815 |
+
}
|
1816 |
+
}
|
1817 |
+
layer {
|
1818 |
+
name: "mbox_loc"
|
1819 |
+
type: "Concat"
|
1820 |
+
bottom: "conv11_mbox_loc_flat"
|
1821 |
+
bottom: "conv13_mbox_loc_flat"
|
1822 |
+
bottom: "conv14_2_mbox_loc_flat"
|
1823 |
+
bottom: "conv15_2_mbox_loc_flat"
|
1824 |
+
bottom: "conv16_2_mbox_loc_flat"
|
1825 |
+
bottom: "conv17_2_mbox_loc_flat"
|
1826 |
+
top: "mbox_loc"
|
1827 |
+
concat_param {
|
1828 |
+
axis: 1
|
1829 |
+
}
|
1830 |
+
}
|
1831 |
+
layer {
|
1832 |
+
name: "mbox_conf"
|
1833 |
+
type: "Concat"
|
1834 |
+
bottom: "conv11_mbox_conf_flat"
|
1835 |
+
bottom: "conv13_mbox_conf_flat"
|
1836 |
+
bottom: "conv14_2_mbox_conf_flat"
|
1837 |
+
bottom: "conv15_2_mbox_conf_flat"
|
1838 |
+
bottom: "conv16_2_mbox_conf_flat"
|
1839 |
+
bottom: "conv17_2_mbox_conf_flat"
|
1840 |
+
top: "mbox_conf"
|
1841 |
+
concat_param {
|
1842 |
+
axis: 1
|
1843 |
+
}
|
1844 |
+
}
|
1845 |
+
layer {
|
1846 |
+
name: "mbox_priorbox"
|
1847 |
+
type: "Concat"
|
1848 |
+
bottom: "conv11_mbox_priorbox"
|
1849 |
+
bottom: "conv13_mbox_priorbox"
|
1850 |
+
bottom: "conv14_2_mbox_priorbox"
|
1851 |
+
bottom: "conv15_2_mbox_priorbox"
|
1852 |
+
bottom: "conv16_2_mbox_priorbox"
|
1853 |
+
bottom: "conv17_2_mbox_priorbox"
|
1854 |
+
top: "mbox_priorbox"
|
1855 |
+
concat_param {
|
1856 |
+
axis: 2
|
1857 |
+
}
|
1858 |
+
}
|
1859 |
+
layer {
|
1860 |
+
name: "mbox_conf_reshape"
|
1861 |
+
type: "Reshape"
|
1862 |
+
bottom: "mbox_conf"
|
1863 |
+
top: "mbox_conf_reshape"
|
1864 |
+
reshape_param {
|
1865 |
+
shape {
|
1866 |
+
dim: 0
|
1867 |
+
dim: -1
|
1868 |
+
dim: 21
|
1869 |
+
}
|
1870 |
+
}
|
1871 |
+
}
|
1872 |
+
layer {
|
1873 |
+
name: "mbox_conf_softmax"
|
1874 |
+
type: "Softmax"
|
1875 |
+
bottom: "mbox_conf_reshape"
|
1876 |
+
top: "mbox_conf_softmax"
|
1877 |
+
softmax_param {
|
1878 |
+
axis: 2
|
1879 |
+
}
|
1880 |
+
}
|
1881 |
+
layer {
|
1882 |
+
name: "mbox_conf_flatten"
|
1883 |
+
type: "Flatten"
|
1884 |
+
bottom: "mbox_conf_softmax"
|
1885 |
+
top: "mbox_conf_flatten"
|
1886 |
+
flatten_param {
|
1887 |
+
axis: 1
|
1888 |
+
}
|
1889 |
+
}
|
1890 |
+
layer {
|
1891 |
+
name: "detection_out"
|
1892 |
+
type: "DetectionOutput"
|
1893 |
+
bottom: "mbox_loc"
|
1894 |
+
bottom: "mbox_conf_flatten"
|
1895 |
+
bottom: "mbox_priorbox"
|
1896 |
+
top: "detection_out"
|
1897 |
+
include {
|
1898 |
+
phase: TEST
|
1899 |
+
}
|
1900 |
+
detection_output_param {
|
1901 |
+
num_classes: 21
|
1902 |
+
share_location: true
|
1903 |
+
background_label_id: 0
|
1904 |
+
nms_param {
|
1905 |
+
nms_threshold: 0.45
|
1906 |
+
top_k: 100
|
1907 |
+
}
|
1908 |
+
code_type: CENTER_SIZE
|
1909 |
+
keep_top_k: 100
|
1910 |
+
confidence_threshold: 0.25
|
1911 |
+
}
|
1912 |
+
}
|
roi/pooler.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from enum import Enum
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import Tensor
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
# from support.layer.roi_align import ROIAlign
|
8 |
+
from torchvision.ops import RoIAlign as ROIAlign
|
9 |
+
|
10 |
+
|
11 |
+
class Pooler(object):
|
12 |
+
|
13 |
+
class Mode(Enum):
|
14 |
+
POOLING = 'pooling'
|
15 |
+
ALIGN = 'align'
|
16 |
+
|
17 |
+
OPTIONS = ['pooling', 'align']
|
18 |
+
|
19 |
+
@staticmethod
|
20 |
+
def apply(features: Tensor, proposal_bboxes: Tensor, proposal_batch_indices: Tensor, mode: Mode) -> Tensor:
|
21 |
+
_, _, feature_map_height, feature_map_width = features.shape
|
22 |
+
scale = 1 / 16
|
23 |
+
output_size = (7 * 2, 7 * 2)
|
24 |
+
|
25 |
+
if mode == Pooler.Mode.POOLING:
|
26 |
+
pool = []
|
27 |
+
for (proposal_bbox, proposal_batch_index) in zip(proposal_bboxes, proposal_batch_indices):
|
28 |
+
start_x = max(min(round(proposal_bbox[0].item() * scale), feature_map_width - 1), 0) # [0, feature_map_width)
|
29 |
+
start_y = max(min(round(proposal_bbox[1].item() * scale), feature_map_height - 1), 0) # (0, feature_map_height]
|
30 |
+
end_x = max(min(round(proposal_bbox[2].item() * scale) + 1, feature_map_width), 1) # [0, feature_map_width)
|
31 |
+
end_y = max(min(round(proposal_bbox[3].item() * scale) + 1, feature_map_height), 1) # (0, feature_map_height]
|
32 |
+
roi_feature_map = features[proposal_batch_index, :, start_y:end_y, start_x:end_x]
|
33 |
+
pool.append(F.adaptive_max_pool2d(input=roi_feature_map, output_size=output_size))
|
34 |
+
pool = torch.stack(pool, dim=0)
|
35 |
+
elif mode == Pooler.Mode.ALIGN:
|
36 |
+
pool = ROIAlign(output_size, spatial_scale=scale, sampling_ratio=0)(
|
37 |
+
features,
|
38 |
+
torch.cat([proposal_batch_indices.view(-1, 1).float(), proposal_bboxes], dim=1)
|
39 |
+
)
|
40 |
+
else:
|
41 |
+
raise ValueError
|
42 |
+
|
43 |
+
pool = F.max_pool2d(input=pool, kernel_size=2, stride=2)
|
44 |
+
return pool
|
45 |
+
|
rpn/region_proposal_network.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple, List, Optional, Union
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from torch import nn, Tensor
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
from bbox import BBox
|
9 |
+
from extension.functional import beta_smooth_l1_loss
|
10 |
+
from torchvision.ops import nms
|
11 |
+
|
12 |
+
|
13 |
+
class RegionProposalNetwork(nn.Module):
|
14 |
+
|
15 |
+
def __init__(self, num_features_out: int, anchor_ratios: List[Tuple[int, int]], anchor_sizes: List[int],
|
16 |
+
pre_nms_top_n: int, post_nms_top_n: int, anchor_smooth_l1_loss_beta: float):
|
17 |
+
super().__init__()
|
18 |
+
|
19 |
+
self._features = nn.Sequential(
|
20 |
+
nn.Conv2d(in_channels=num_features_out, out_channels=512, kernel_size=3, padding=1),
|
21 |
+
nn.ReLU()
|
22 |
+
)
|
23 |
+
|
24 |
+
self._anchor_ratios = anchor_ratios
|
25 |
+
self._anchor_sizes = anchor_sizes
|
26 |
+
|
27 |
+
num_anchor_ratios = len(self._anchor_ratios)
|
28 |
+
num_anchor_sizes = len(self._anchor_sizes)
|
29 |
+
num_anchors = num_anchor_ratios * num_anchor_sizes
|
30 |
+
|
31 |
+
self._pre_nms_top_n = pre_nms_top_n
|
32 |
+
self._post_nms_top_n = post_nms_top_n
|
33 |
+
self._anchor_smooth_l1_loss_beta = anchor_smooth_l1_loss_beta
|
34 |
+
|
35 |
+
self._anchor_objectness = nn.Conv2d(in_channels=512, out_channels=num_anchors * 2, kernel_size=1)
|
36 |
+
self._anchor_transformer = nn.Conv2d(in_channels=512, out_channels=num_anchors * 4, kernel_size=1)
|
37 |
+
|
38 |
+
def forward(self, features: Tensor,
|
39 |
+
anchor_bboxes: Optional[Tensor] = None, gt_bboxes_batch: Optional[Tensor] = None,
|
40 |
+
image_width: Optional[int]=None, image_height: Optional[int]=None) -> Union[Tuple[Tensor, Tensor], Tuple[Tensor, Tensor, Tensor, Tensor]]:
|
41 |
+
batch_size = features.shape[0]
|
42 |
+
|
43 |
+
features = self._features(features)
|
44 |
+
anchor_objectnesses = self._anchor_objectness(features)
|
45 |
+
anchor_transformers = self._anchor_transformer(features)
|
46 |
+
|
47 |
+
anchor_objectnesses = anchor_objectnesses.permute(0, 2, 3, 1).contiguous().view(batch_size, -1, 2)
|
48 |
+
anchor_transformers = anchor_transformers.permute(0, 2, 3, 1).contiguous().view(batch_size, -1, 4)
|
49 |
+
|
50 |
+
if not self.training:
|
51 |
+
return anchor_objectnesses, anchor_transformers
|
52 |
+
else:
|
53 |
+
# remove cross-boundary
|
54 |
+
# NOTE: The length of `inside_indices` is guaranteed to be a multiple of `anchor_bboxes.shape[0]` as each batch in `anchor_bboxes` is the same
|
55 |
+
inside_indices = BBox.inside(anchor_bboxes, left=0, top=0, right=image_width, bottom=image_height).nonzero().unbind(dim=1)
|
56 |
+
inside_anchor_bboxes = anchor_bboxes[inside_indices].view(batch_size, -1, anchor_bboxes.shape[2])
|
57 |
+
inside_anchor_objectnesses = anchor_objectnesses[inside_indices].view(batch_size, -1, anchor_objectnesses.shape[2])
|
58 |
+
inside_anchor_transformers = anchor_transformers[inside_indices].view(batch_size, -1, anchor_transformers.shape[2])
|
59 |
+
|
60 |
+
# find labels for each `anchor_bboxes`
|
61 |
+
labels = torch.full((batch_size, inside_anchor_bboxes.shape[1]), -1, dtype=torch.long, device=inside_anchor_bboxes.device)
|
62 |
+
ious = BBox.iou(inside_anchor_bboxes, gt_bboxes_batch)
|
63 |
+
anchor_max_ious, anchor_assignments = ious.max(dim=2)
|
64 |
+
gt_max_ious, gt_assignments = ious.max(dim=1)
|
65 |
+
anchor_additions = ((ious > 0) & (ious == gt_max_ious.unsqueeze(dim=1))).nonzero()[:, :2].unbind(dim=1)
|
66 |
+
labels[anchor_max_ious < 0.3] = 0
|
67 |
+
labels[anchor_additions] = 1
|
68 |
+
labels[anchor_max_ious >= 0.7] = 1
|
69 |
+
|
70 |
+
# select 256 x `batch_size` samples
|
71 |
+
fg_indices = (labels == 1).nonzero()
|
72 |
+
bg_indices = (labels == 0).nonzero()
|
73 |
+
fg_indices = fg_indices[torch.randperm(len(fg_indices))[:min(len(fg_indices), 256 * batch_size)]]
|
74 |
+
bg_indices = bg_indices[torch.randperm(len(bg_indices))[:256 * batch_size - len(fg_indices)]]
|
75 |
+
selected_indices = torch.cat([fg_indices, bg_indices], dim=0)
|
76 |
+
selected_indices = selected_indices[torch.randperm(len(selected_indices))].unbind(dim=1)
|
77 |
+
|
78 |
+
inside_anchor_bboxes = inside_anchor_bboxes[selected_indices]
|
79 |
+
gt_bboxes = gt_bboxes_batch[selected_indices[0], anchor_assignments[selected_indices]]
|
80 |
+
gt_anchor_objectnesses = labels[selected_indices]
|
81 |
+
gt_anchor_transformers = BBox.calc_transformer(inside_anchor_bboxes, gt_bboxes)
|
82 |
+
batch_indices = selected_indices[0]
|
83 |
+
|
84 |
+
anchor_objectness_losses, anchor_transformer_losses = self.loss(inside_anchor_objectnesses[selected_indices],
|
85 |
+
inside_anchor_transformers[selected_indices],
|
86 |
+
gt_anchor_objectnesses,
|
87 |
+
gt_anchor_transformers,
|
88 |
+
batch_size, batch_indices)
|
89 |
+
|
90 |
+
return anchor_objectnesses, anchor_transformers, anchor_objectness_losses, anchor_transformer_losses
|
91 |
+
|
92 |
+
def loss(self, anchor_objectnesses: Tensor, anchor_transformers: Tensor,
|
93 |
+
gt_anchor_objectnesses: Tensor, gt_anchor_transformers: Tensor,
|
94 |
+
batch_size: int, batch_indices: Tensor) -> Tuple[Tensor, Tensor]:
|
95 |
+
cross_entropies = torch.empty(batch_size, dtype=torch.float, device=anchor_objectnesses.device)
|
96 |
+
smooth_l1_losses = torch.empty(batch_size, dtype=torch.float, device=anchor_transformers.device)
|
97 |
+
|
98 |
+
for batch_index in range(batch_size):
|
99 |
+
selected_indices = (batch_indices == batch_index).nonzero().view(-1)
|
100 |
+
|
101 |
+
cross_entropy = F.cross_entropy(input=anchor_objectnesses[selected_indices],
|
102 |
+
target=gt_anchor_objectnesses[selected_indices])
|
103 |
+
|
104 |
+
fg_indices = gt_anchor_objectnesses[selected_indices].nonzero().view(-1)
|
105 |
+
smooth_l1_loss = beta_smooth_l1_loss(input=anchor_transformers[selected_indices][fg_indices],
|
106 |
+
target=gt_anchor_transformers[selected_indices][fg_indices],
|
107 |
+
beta=self._anchor_smooth_l1_loss_beta)
|
108 |
+
|
109 |
+
cross_entropies[batch_index] = cross_entropy
|
110 |
+
smooth_l1_losses[batch_index] = smooth_l1_loss
|
111 |
+
|
112 |
+
return cross_entropies, smooth_l1_losses
|
113 |
+
|
114 |
+
def generate_anchors(self, image_width: int, image_height: int, num_x_anchors: int, num_y_anchors: int) -> Tensor:
|
115 |
+
center_ys = np.linspace(start=0, stop=image_height, num=num_y_anchors + 2)[1:-1]
|
116 |
+
center_xs = np.linspace(start=0, stop=image_width, num=num_x_anchors + 2)[1:-1]
|
117 |
+
ratios = np.array(self._anchor_ratios)
|
118 |
+
ratios = ratios[:, 0] / ratios[:, 1]
|
119 |
+
sizes = np.array(self._anchor_sizes)
|
120 |
+
|
121 |
+
# NOTE: it's important to let `center_ys` be the major index (i.e., move horizontally and then vertically) for consistency with 2D convolution
|
122 |
+
# giving the string 'ij' returns a meshgrid with matrix indexing, i.e., with shape (#center_ys, #center_xs, #ratios)
|
123 |
+
center_ys, center_xs, ratios, sizes = np.meshgrid(center_ys, center_xs, ratios, sizes, indexing='ij')
|
124 |
+
|
125 |
+
center_ys = center_ys.reshape(-1)
|
126 |
+
center_xs = center_xs.reshape(-1)
|
127 |
+
ratios = ratios.reshape(-1)
|
128 |
+
sizes = sizes.reshape(-1)
|
129 |
+
|
130 |
+
widths = sizes * np.sqrt(1 / ratios)
|
131 |
+
heights = sizes * np.sqrt(ratios)
|
132 |
+
|
133 |
+
center_based_anchor_bboxes = np.stack((center_xs, center_ys, widths, heights), axis=1)
|
134 |
+
center_based_anchor_bboxes = torch.from_numpy(center_based_anchor_bboxes).float()
|
135 |
+
anchor_bboxes = BBox.from_center_base(center_based_anchor_bboxes)
|
136 |
+
|
137 |
+
return anchor_bboxes
|
138 |
+
|
139 |
+
def generate_proposals(self, anchor_bboxes: Tensor, objectnesses: Tensor, transformers: Tensor, image_width: int, image_height: int) -> Tensor:
|
140 |
+
batch_size = anchor_bboxes.shape[0]
|
141 |
+
|
142 |
+
proposal_bboxes = BBox.apply_transformer(anchor_bboxes, transformers)
|
143 |
+
proposal_bboxes = BBox.clip(proposal_bboxes, left=0, top=0, right=image_width, bottom=image_height)
|
144 |
+
proposal_probs = F.softmax(objectnesses[:, :, 1], dim=-1)
|
145 |
+
|
146 |
+
_, sorted_indices = torch.sort(proposal_probs, dim=-1, descending=True)
|
147 |
+
nms_proposal_bboxes_batch = []
|
148 |
+
|
149 |
+
for batch_index in range(batch_size):
|
150 |
+
sorted_bboxes = proposal_bboxes[batch_index][sorted_indices[batch_index]][:self._pre_nms_top_n]
|
151 |
+
sorted_probs = proposal_probs[batch_index][sorted_indices[batch_index]][:self._pre_nms_top_n]
|
152 |
+
threshold = 0.7
|
153 |
+
kept_indices = nms(sorted_bboxes, sorted_probs, threshold)
|
154 |
+
nms_bboxes = sorted_bboxes[kept_indices][:self._post_nms_top_n]
|
155 |
+
nms_proposal_bboxes_batch.append(nms_bboxes)
|
156 |
+
|
157 |
+
max_nms_proposal_bboxes_length = max([len(it) for it in nms_proposal_bboxes_batch])
|
158 |
+
padded_proposal_bboxes = []
|
159 |
+
|
160 |
+
for nms_proposal_bboxes in nms_proposal_bboxes_batch:
|
161 |
+
padded_proposal_bboxes.append(
|
162 |
+
torch.cat([
|
163 |
+
nms_proposal_bboxes,
|
164 |
+
torch.zeros(max_nms_proposal_bboxes_length - len(nms_proposal_bboxes), 4).to(nms_proposal_bboxes)
|
165 |
+
])
|
166 |
+
)
|
167 |
+
|
168 |
+
padded_proposal_bboxes = torch.stack(padded_proposal_bboxes, dim=0)
|
169 |
+
return padded_proposal_bboxes
|