|
|
|
|
|
|
|
|
|
|
|
|
|
import xml.etree.ElementTree as ET |
|
import os |
|
import _pickle as cPickle |
|
import numpy as np |
|
|
|
def parse_rec(filename): |
|
""" Parse a PASCAL VOC xml file """ |
|
tree = ET.parse(filename) |
|
objects = [] |
|
for obj in tree.findall('object'): |
|
obj_struct = {} |
|
obj_struct['name'] = obj.find('name').text |
|
obj_struct['pose'] = obj.find('pose').text |
|
obj_struct['truncated'] = int(obj.find('truncated').text) |
|
obj_struct['difficult'] = int(obj.find('difficult').text) |
|
bbox = obj.find('bndbox') |
|
obj_struct['bbox'] = [int(bbox.find('xmin').text), |
|
int(bbox.find('ymin').text), |
|
int(bbox.find('xmax').text), |
|
int(bbox.find('ymax').text)] |
|
objects.append(obj_struct) |
|
|
|
return objects |
|
|
|
def voc_ap(rec, prec, use_07_metric=False): |
|
""" ap = voc_ap(rec, prec, [use_07_metric]) |
|
Compute VOC AP given precision and recall. |
|
If use_07_metric is true, uses the |
|
VOC 07 11 point method (default:False). |
|
""" |
|
if use_07_metric: |
|
|
|
ap = 0. |
|
for t in np.arange(0., 1.1, 0.1): |
|
if np.sum(rec >= t) == 0: |
|
p = 0 |
|
else: |
|
p = np.max(prec[rec >= t]) |
|
ap = ap + p / 11. |
|
else: |
|
|
|
|
|
mrec = np.concatenate(([0.], rec, [1.])) |
|
mpre = np.concatenate(([0.], prec, [0.])) |
|
|
|
|
|
for i in range(mpre.size - 1, 0, -1): |
|
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) |
|
|
|
|
|
|
|
i = np.where(mrec[1:] != mrec[:-1])[0] |
|
|
|
|
|
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) |
|
return ap |
|
|
|
def voc_eval(detpath, |
|
annopath, |
|
imagesetfile, |
|
classname, |
|
cachedir, |
|
ovthresh=0.5, |
|
use_07_metric=False): |
|
"""rec, prec, ap = voc_eval(detpath, |
|
annopath, |
|
imagesetfile, |
|
classname, |
|
[ovthresh], |
|
[use_07_metric]) |
|
Top level function that does the PASCAL VOC evaluation. |
|
detpath: Path to detections |
|
detpath.format(classname) should produce the detection results file. |
|
annopath: Path to annotations |
|
annopath.format(imagename) should be the xml annotations file. |
|
imagesetfile: Text file containing the list of images, one image per line. |
|
classname: Category name (duh) |
|
cachedir: Directory for caching the annotations |
|
[ovthresh]: Overlap threshold (default = 0.5) |
|
[use_07_metric]: Whether to use VOC07's 11 point AP computation |
|
(default False) |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
if not os.path.isdir(cachedir): |
|
os.mkdir(cachedir) |
|
cachefile = os.path.join(cachedir, 'annots.pkl') |
|
|
|
with open(imagesetfile, 'r') as f: |
|
lines = f.readlines() |
|
imagenames = [x.strip() for x in lines] |
|
|
|
if not os.path.isfile(cachefile): |
|
|
|
recs = {} |
|
for i, imagename in enumerate(imagenames): |
|
recs[imagename] = parse_rec(annopath.format(imagename)) |
|
if i % 100 == 0: |
|
print('Reading annotation for {:d}/{:d}'.format( |
|
i + 1, len(imagenames))) |
|
|
|
print('Saving cached annotations to {:s}'.format(cachefile)) |
|
with open(cachefile, 'wb') as f: |
|
cPickle.dump(recs, f) |
|
else: |
|
|
|
with open(cachefile, 'rb') as f: |
|
recs = cPickle.load(f) |
|
|
|
|
|
class_recs = {} |
|
npos = 0 |
|
for imagename in imagenames: |
|
R = [obj for obj in recs[imagename] if obj['name'] == classname] |
|
bbox = np.array([x['bbox'] for x in R]) |
|
difficult = np.array([x['difficult'] for x in R]).astype(np.bool_) |
|
det = [False] * len(R) |
|
npos = npos + sum(~difficult) |
|
class_recs[imagename] = {'bbox': bbox, |
|
'difficult': difficult, |
|
'det': det} |
|
|
|
|
|
detfile = detpath.format(classname) |
|
with open(detfile, 'r') as f: |
|
lines = f.readlines() |
|
|
|
splitlines = [x.strip().split(' ') for x in lines] |
|
image_ids = [x[0] for x in splitlines] |
|
confidence = np.array([float(x[1]) for x in splitlines]) |
|
BB = np.array([[float(z) for z in x[2:]] for x in splitlines]) |
|
|
|
|
|
sorted_ind = np.argsort(-confidence) |
|
sorted_scores = np.sort(-confidence) |
|
BB = BB[sorted_ind, :] |
|
image_ids = [image_ids[x] for x in sorted_ind] |
|
|
|
|
|
nd = len(image_ids) |
|
tp = np.zeros(nd) |
|
fp = np.zeros(nd) |
|
for d in range(nd): |
|
R = class_recs[image_ids[d]] |
|
bb = BB[d, :].astype(float) |
|
ovmax = -np.inf |
|
BBGT = R['bbox'].astype(float) |
|
|
|
if BBGT.size > 0: |
|
|
|
|
|
ixmin = np.maximum(BBGT[:, 0], bb[0]) |
|
iymin = np.maximum(BBGT[:, 1], bb[1]) |
|
ixmax = np.minimum(BBGT[:, 2], bb[2]) |
|
iymax = np.minimum(BBGT[:, 3], bb[3]) |
|
iw = np.maximum(ixmax - ixmin + 1., 0.) |
|
ih = np.maximum(iymax - iymin + 1., 0.) |
|
inters = iw * ih |
|
|
|
|
|
uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) + |
|
(BBGT[:, 2] - BBGT[:, 0] + 1.) * |
|
(BBGT[:, 3] - BBGT[:, 1] + 1.) - inters) |
|
|
|
overlaps = inters / uni |
|
ovmax = np.max(overlaps) |
|
jmax = np.argmax(overlaps) |
|
|
|
if ovmax > ovthresh: |
|
if not R['difficult'][jmax]: |
|
if not R['det'][jmax]: |
|
tp[d] = 1. |
|
R['det'][jmax] = 1 |
|
else: |
|
fp[d] = 1. |
|
else: |
|
fp[d] = 1. |
|
|
|
|
|
fp = np.cumsum(fp) |
|
tp = np.cumsum(tp) |
|
rec = tp / float(npos) |
|
|
|
|
|
prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps) |
|
ap = voc_ap(rec, prec, use_07_metric) |
|
|
|
return rec, prec, ap |
|
|