"""
Emotion Detection:
Model from: https://github.com/onnx/models/blob/main/vision/body_analysis/emotion_ferplus/model/emotion-ferplus-8.onnx
Model name: emotion-ferplus-8.onnx
"""

import cv2
import numpy as np
import time
import os

from cv2 import dnn
from math import ceil

import logging
import queue
from pathlib import Path
from typing import List, NamedTuple

import av
import streamlit as st
from streamlit_webrtc import WebRtcMode, webrtc_streamer

from sample_utils.download import download_file
from sample_utils.turn import get_ice_servers

HERE = Path(__file__).parent
ROOT = HERE.parent

logger = logging.getLogger(__name__)

ONNX_MODEL_URL = "https://github.com/spmallick/learnopencv/raw/master/Facial-Emotion-Recognition/emotion-ferplus-8.onnx"  # noqa: E501
ONNX_MODEL_LOCAL_PATH = ROOT / "./emotion-ferplus-8.onnx"
CAFFE_MODEL_URL = "https://github.com/spmallick/learnopencv/raw/master/Facial-Emotion-Recognition/RFB-320/RFB-320.caffemodel"  # noqa: E501
CAFFE_MODEL_LOCAL_PATH = ROOT / "./RFB-320/RFB-320.caffemodel"
PROTOTXT_URL = "https://github.com/spmallick/learnopencv/raw/master/Facial-Emotion-Recognition/RFB-320/RFB-320.prototxt"  # noqa: E501
PROTOTXT_LOCAL_PATH = ROOT / "./RFB-320/RFB-320.prototxt.txt"

download_file(ONNX_MODEL_URL, ONNX_MODEL_LOCAL_PATH, expected_size=None)
download_file(CAFFE_MODEL_URL, CAFFE_MODEL_LOCAL_PATH, expected_size=None)
download_file(PROTOTXT_URL, PROTOTXT_LOCAL_PATH, expected_size=None)

# Session-specific caching
onnx_cache_key = "onnx_model"
caffe_cache_key = "caffe_model"

if onnx_cache_key in st.session_state and caffe_cache_key in st.session_state:
    model = st.session_state[onnx_cache_key]
    net = st.session_state[caffe_cache_key]
else:
    # emotion detection model
    model = cv2.dnn.readNetFromONNX(str(ONNX_MODEL_LOCAL_PATH))
    # face detection model
    net = cv2.dnn.readNetFromCaffe(str(PROTOTXT_LOCAL_PATH), str(CAFFE_MODEL_LOCAL_PATH))
    st.session_state[onnx_cache_key] = model
    st.session_state[caffe_cache_key] = net

image_mean = np.array([127, 127, 127])
image_std = 128.0
iou_threshold = 0.3
center_variance = 0.1
size_variance = 0.2
min_boxes = [
    [10.0, 16.0, 24.0], 
    [32.0, 48.0], 
    [64.0, 96.0], 
    [128.0, 192.0, 256.0]
]
strides = [8.0, 16.0, 32.0, 64.0]
threshold = 0.5

emotion_dict = {
        0: 'neutral', 
        1: 'happiness', 
        2: 'surprise', 
        3: 'sadness',
        4: 'anger', 
        5: 'disgust', 
        6: 'fear'
    }

def define_img_size(image_size):
    shrinkage_list = []
    feature_map_w_h_list = []
    for size in image_size:
        feature_map = [int(ceil(size / stride)) for stride in strides]
        feature_map_w_h_list.append(feature_map)

    for i in range(0, len(image_size)):
        shrinkage_list.append(strides)
    priors = generate_priors(
        feature_map_w_h_list, shrinkage_list, image_size, min_boxes
    )
    return priors


def generate_priors(
    feature_map_list, shrinkage_list, image_size, min_boxes
):
    priors = []
    for index in range(0, len(feature_map_list[0])):
        scale_w = image_size[0] / shrinkage_list[0][index]
        scale_h = image_size[1] / shrinkage_list[1][index]
        for j in range(0, feature_map_list[1][index]):
            for i in range(0, feature_map_list[0][index]):
                x_center = (i + 0.5) / scale_w
                y_center = (j + 0.5) / scale_h

                for min_box in min_boxes[index]:
                    w = min_box / image_size[0]
                    h = min_box / image_size[1]
                    priors.append([
                        x_center,
                        y_center,
                        w,
                        h
                    ])
    print("priors nums:{}".format(len(priors)))
    return np.clip(priors, 0.0, 1.0)


def hard_nms(box_scores, iou_threshold, top_k=-1, candidate_size=200):
    scores = box_scores[:, -1]
    boxes = box_scores[:, :-1]
    picked = []
    indexes = np.argsort(scores)
    indexes = indexes[-candidate_size:]
    while len(indexes) > 0:
        current = indexes[-1]
        picked.append(current)
        if 0 < top_k == len(picked) or len(indexes) == 1:
            break
        current_box = boxes[current, :]
        indexes = indexes[:-1]
        rest_boxes = boxes[indexes, :]
        iou = iou_of(
            rest_boxes,
            np.expand_dims(current_box, axis=0),
        )
        indexes = indexes[iou <= iou_threshold]
    return box_scores[picked, :]


def area_of(left_top, right_bottom):
    hw = np.clip(right_bottom - left_top, 0.0, None)
    return hw[..., 0] * hw[..., 1]


def iou_of(boxes0, boxes1, eps=1e-5):
    overlap_left_top = np.maximum(boxes0[..., :2], boxes1[..., :2])
    overlap_right_bottom = np.minimum(boxes0[..., 2:], boxes1[..., 2:]) 

    overlap_area = area_of(overlap_left_top, overlap_right_bottom)
    area0 = area_of(boxes0[..., :2], boxes0[..., 2:])
    area1 = area_of(boxes1[..., :2], boxes1[..., 2:])
    return overlap_area / (area0 + area1 - overlap_area + eps)


def predict(
    width, 
    height, 
    confidences, 
    boxes, 
    prob_threshold, 
    iou_threshold=0.3, 
    top_k=-1
):
    boxes = boxes[0]
    confidences = confidences[0]
    picked_box_probs = []
    picked_labels = []
    for class_index in range(1, confidences.shape[1]):
        probs = confidences[:, class_index]
        mask = probs > prob_threshold
        probs = probs[mask]
        if probs.shape[0] == 0:
            continue
        subset_boxes = boxes[mask, :]
        box_probs = np.concatenate(
            [subset_boxes, probs.reshape(-1, 1)], axis=1
        )
        box_probs = hard_nms(box_probs,
                             iou_threshold=iou_threshold,
                             top_k=top_k,
                             )
        picked_box_probs.append(box_probs)
        picked_labels.extend([class_index] * box_probs.shape[0])
    if not picked_box_probs:
        return np.array([]), np.array([]), np.array([])
    picked_box_probs = np.concatenate(picked_box_probs)
    picked_box_probs[:, 0] *= width
    picked_box_probs[:, 1] *= height
    picked_box_probs[:, 2] *= width
    picked_box_probs[:, 3] *= height
    return (
        picked_box_probs[:, :4].astype(np.int32), 
        np.array(picked_labels), 
        picked_box_probs[:, 4]
    )


def convert_locations_to_boxes(locations, priors, center_variance,
                               size_variance):
    if len(priors.shape) + 1 == len(locations.shape):
        priors = np.expand_dims(priors, 0)
    return np.concatenate([
        locations[..., :2] * center_variance * priors[..., 2:] + priors[..., :2],
        np.exp(locations[..., 2:] * size_variance) * priors[..., 2:]
    ], axis=len(locations.shape) - 1)


def center_form_to_corner_form(locations):
    return np.concatenate(
        [locations[..., :2] - locations[..., 2:] / 2,
         locations[..., :2] + locations[..., 2:] / 2], 
        len(locations.shape) - 1
    )


def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
    
    frame = frame.to_ndarray(format="bgr24")

    input_size = [320, 240]
    width = input_size[0]
    height = input_size[1]
    priors = define_img_size(input_size)

    img_ori = frame
    #print("frame size: ", frame.shape)
    rect = cv2.resize(img_ori, (width, height))
    rect = cv2.cvtColor(rect, cv2.COLOR_BGR2RGB)
    net.setInput(dnn.blobFromImage(
        rect, 1 / image_std, (width, height), 127)
    )
    start_time = time.time()
    boxes, scores = net.forward(["boxes", "scores"])
    boxes = np.expand_dims(np.reshape(boxes, (-1, 4)), axis=0)
    scores = np.expand_dims(np.reshape(scores, (-1, 2)), axis=0)
    boxes = convert_locations_to_boxes(
        boxes, priors, center_variance, size_variance
    )
    boxes = center_form_to_corner_form(boxes)
    boxes, labels, probs = predict(
        img_ori.shape[1], 
        img_ori.shape[0], 
        scores, 
        boxes, 
        threshold
    )
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    for (x1, y1, x2, y2) in boxes:
        w = x2 - x1
        h = y2 - y1
        cv2.rectangle(frame, (x1,y1), (x2, y2), (255,0,0), 2)
        resize_frame = cv2.resize(
            gray[y1:y1 + h, x1:x1 + w], (64, 64)
        )
        resize_frame = resize_frame.reshape(1, 1, 64, 64)
        model.setInput(resize_frame)
        output = model.forward()
        end_time = time.time()
        fps = 1 / (end_time - start_time)
        print(f"FPS: {fps:.1f}")
        pred = emotion_dict[list(output[0]).index(max(output[0]))]
        cv2.rectangle(
            img_ori, 
            (x1, y1), 
            (x2, y2), 
            (215, 5, 247), 
            2,
            lineType=cv2.LINE_AA
        )
        cv2.putText(
            frame, 
            pred, 
            (x1, y1-10), 
            cv2.FONT_HERSHEY_SIMPLEX, 
            0.8, 
            (215, 5, 247), 
            2,
            lineType=cv2.LINE_AA
        )
    
    return av.VideoFrame.from_ndarray(frame, format="bgr24")

if __name__ == "__main__":
    webrtc_ctx = webrtc_streamer(
        key="face-emotion-recognition",
        mode=WebRtcMode.SENDRECV,
        rtc_configuration={
            "iceServers": get_ice_servers(),
            "iceTransportPolicy": "relay",
        },
        video_frame_callback=video_frame_callback,
        media_stream_constraints={"video": True, "audio": False},
        async_processing=True,
    )


    st.markdown(
        "This demo uses a model and code from "
        "https://github.com/spmallick/learnopencv. "
        "Many thanks to the project."
    )