Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
+
from src.utils import plogp, sf_decode, sim
|
4 |
+
import pandas as pd
|
5 |
+
from rdkit import Chem
|
6 |
+
from rdkit.Chem import AllChem
|
7 |
+
from rdkit import DataStructs
|
8 |
+
from rdkit.Chem import Descriptors
|
9 |
+
import selfies as sf
|
10 |
+
from rdkit.Chem import RDConfig
|
11 |
+
import os
|
12 |
+
import sys
|
13 |
+
sys.path.append(os.path.join(RDConfig.RDContribDir, 'SA_Score'))
|
14 |
+
import sascorer
|
15 |
+
|
16 |
+
def get_largest_ring_size(mol):
|
17 |
+
cycle_list = mol.GetRingInfo().AtomRings()
|
18 |
+
if cycle_list:
|
19 |
+
cycle_length = max([len(j) for j in cycle_list])
|
20 |
+
else:
|
21 |
+
cycle_length = 0
|
22 |
+
return cycle_length
|
23 |
+
|
24 |
+
def plogp(smile):
|
25 |
+
if smile:
|
26 |
+
mol = Chem.MolFromSmiles(smile)
|
27 |
+
if mol:
|
28 |
+
log_p = Descriptors.MolLogP(mol)
|
29 |
+
sas_score = sascorer.calculateScore(mol)
|
30 |
+
largest_ring_size = get_largest_ring_size(mol)
|
31 |
+
cycle_score = max(largest_ring_size - 6, 0)
|
32 |
+
if log_p and sas_score and largest_ring_size:
|
33 |
+
p_logp = log_p - sas_score - cycle_score
|
34 |
+
return p_logp
|
35 |
+
else:
|
36 |
+
return -100
|
37 |
+
else:
|
38 |
+
return -100
|
39 |
+
else:
|
40 |
+
return -100
|
41 |
+
|
42 |
+
def sf_decode(selfies):
|
43 |
+
try:
|
44 |
+
decode = sf.decoder(selfies)
|
45 |
+
return decode
|
46 |
+
except sf.DecoderError:
|
47 |
+
return ''
|
48 |
+
|
49 |
+
def sim(input_smile, output_smile):
|
50 |
+
if input_smile and output_smile:
|
51 |
+
input_mol = Chem.MolFromSmiles(input_smile)
|
52 |
+
output_mol = Chem.MolFromSmiles(output_smile)
|
53 |
+
if input_mol and output_mol:
|
54 |
+
input_fp = AllChem.GetMorganFingerprint(input_mol, 2)
|
55 |
+
output_fp = AllChem.GetMorganFingerprint(output_mol, 2)
|
56 |
+
sim = DataStructs.TanimotoSimilarity(input_fp, output_fp)
|
57 |
+
return sim
|
58 |
+
else: return None
|
59 |
+
else: return None
|
60 |
+
|
61 |
+
|
62 |
+
def greet(name):
|
63 |
+
|
64 |
+
tokenizer = AutoTokenizer.from_pretrained("zjunlp/MolGen-large-opt")
|
65 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("zjunlp/MolGen-large-opt")
|
66 |
+
|
67 |
+
input = "[C][C][=Branch1][C][=O][N][C][C][O][C][C][O][C][C][O][C][C][Ring1][N]"
|
68 |
+
|
69 |
+
sf_input = tokenizer(input, return_tensors="pt")
|
70 |
+
molecules = model.generate(
|
71 |
+
input_ids=sf_input["input_ids"],
|
72 |
+
attention_mask=sf_input["attention_mask"],
|
73 |
+
do_sample=True,
|
74 |
+
max_length=100,
|
75 |
+
min_length=5,
|
76 |
+
top_k=30,
|
77 |
+
top_p=1,
|
78 |
+
num_return_sequences=10
|
79 |
+
)
|
80 |
+
sf_output = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True).replace(" ","") for g in molecules]
|
81 |
+
sf_output = list(set(sf_output))
|
82 |
+
return sf_output
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
iface = gr.Interface(fn=greet, inputs="text", outputs="text", title="Molecular Language Model as Multi-task Generator")
|
92 |
+
iface.launch()
|