sachitksh123 commited on
Commit
eaf2e9b
·
verified ·
1 Parent(s): 8fce208

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -20
app.py CHANGED
@@ -1,26 +1,45 @@
1
- import streamlit as st
2
- import requests
3
- from transformers import pipeline
4
  import os
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- # Load the token from Hugging Face secrets
7
- HUGGINGFACE_TOKEN = os.environ.get("hf_token") # Ensure this token is correctly set
8
- print("Hugging Face Token:", HUGGINGFACE_TOKEN) # Debugging line
9
 
10
- # Set up the text generation pipeline with the token
11
- pipe = pipeline("text-generation", model="mistralai/Mistral-7B-v0.1",
12
- use_auth_token=HUGGINGFACE_TOKEN)
13
 
14
- # Streamlit application
15
- st.title("Text Generation with Hugging Face")
16
 
17
- # User input
18
- user_input = st.text_input("You: ", "Who are you?")
19
 
20
- if st.button("Generate Response"):
21
- if user_input:
22
- response = pipe(user_input)
23
- generated_text = response[0]['generated_text'] # Adjust according to the response format
24
- st.text_area("Bot:", generated_text, height=200)
25
- else:
26
- st.warning("Please enter a message.")
 
 
 
 
1
  import os
2
+ import streamlit as st
3
+
4
+
5
+ from dotenv import load_dotenv
6
+ from langchain.llms import HuggingFaceEndpoint
7
+
8
+ load_dotenv()
9
+
10
+ os.environ["HUGGINGFACEHUB_API_TOKEN"]=os.getenv("HF_TOKEN")
11
+
12
+ huggingface_token = os.environ["HUGGINGFACEHUB_API_TOKEN"]
13
+
14
+ #Function to return the response
15
+ def load_answer(question):
16
+ # "text-davinci-003" model is depreciated, so using the latest one https://platform.openai.com/docs/deprecations
17
+ if question:
18
+ llm = HuggingFaceEndpoint(repo_id="mistralai/Mistral-7B-Instruct-v0.2")
19
+
20
+ #Last week langchain has recommended to use invoke function for the below please :)
21
+ answer=llm.invoke(question)
22
+ return answer
23
+
24
+
25
+ #App UI starts here
26
+ st.set_page_config(page_title="LangChain Demo - Mistral", page_icon=":robot:")
27
+ st.header("LangChain Demo - Mistral")
28
+
29
+ #Gets the user input
30
+ def get_text():
31
+ input_text = st.text_input("You: ", key="input")
32
+ return input_text
33
+
34
 
35
+ user_input=get_text()
36
+ response = load_answer(user_input)
 
37
 
38
+ submit = st.button('Generate')
 
 
39
 
40
+ #If generate button is clicked
41
+ if submit:
42
 
43
+ st.subheader("Answer:")
 
44
 
45
+ st.write(response)