import streamlit as st from transformers import pipeline from datasets import load_dataset ds = load_dataset("abisee/cnn_dailymail", "3.0.0") t5_sum = pipeline("summarization", model= "t5-small") # Set the title for the Streamlit app st.title("T5 Summary Generator") # Text input for the user text = st.text_area("Enter your text: ") def generate_summaries_and_context(dataset_sample): article = dataset_sample summary = summarizer(article, max_length=150, min_length=40, do_sample=False) return summary[0]['summary_text'] if st.button("Generate"): generated_text = generate_text(text) if generated_text: # Display the generated text st.subheader("Generated Blog Post") st.write(generated_text)