sabssag commited on
Commit
f4663ca
·
verified ·
1 Parent(s): 5481493

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -12
app.py CHANGED
@@ -1,7 +1,11 @@
1
  import streamlit as st
2
- from transformers import pipeline
3
 
4
- t5_sum = pipeline("summarization", model= "t5-small")
 
 
 
 
5
 
6
  # Set the title for the Streamlit app
7
  st.title("T5 Summary Generator")
@@ -9,16 +13,16 @@ st.title("T5 Summary Generator")
9
  # Text input for the user
10
  text = st.text_area("Enter your text: ")
11
 
12
- def generate_text(dataset_sample):
13
- article = dataset_sample
14
- summary = summarizer(article, max_length=150, min_length=40, do_sample=False)
15
-
16
  return summary[0]['summary_text']
17
 
18
  if st.button("Generate"):
19
- generated_text = generate_text(text)
20
- if generated_text:
21
- # Display the generated text
22
- st.subheader("Generated Blog Post")
23
- st.write(generated_text)
24
-
 
 
1
  import streamlit as st
2
+ from transformers import pipeline, TFAutoModelForSeq2SeqLM, T5Tokenizer
3
 
4
+ # Load T5 model for summarization
5
+ model_name = "t5-small"
6
+ model = TFAutoModelForSeq2SeqLM.from_pretrained(model_name)
7
+ tokenizer = T5Tokenizer.from_pretrained(model_name)
8
+ summarizer = pipeline("summarization", model=model, tokenizer=tokenizer)
9
 
10
  # Set the title for the Streamlit app
11
  st.title("T5 Summary Generator")
 
13
  # Text input for the user
14
  text = st.text_area("Enter your text: ")
15
 
16
+ def generate_summary(input_text):
17
+ # Perform summarization
18
+ summary = summarizer(input_text, max_length=150, min_length=40, do_sample=False)
 
19
  return summary[0]['summary_text']
20
 
21
  if st.button("Generate"):
22
+ if text:
23
+ generated_summary = generate_summary(text)
24
+ # Display the generated summary
25
+ st.subheader("Generated Summary")
26
+ st.write(generated_summary)
27
+ else:
28
+ st.warning("Please enter some text to generate a summary.")