Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,11 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import pipeline
|
3 |
|
4 |
-
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Set the title for the Streamlit app
|
7 |
st.title("T5 Summary Generator")
|
@@ -9,16 +13,16 @@ st.title("T5 Summary Generator")
|
|
9 |
# Text input for the user
|
10 |
text = st.text_area("Enter your text: ")
|
11 |
|
12 |
-
def
|
13 |
-
|
14 |
-
summary = summarizer(
|
15 |
-
|
16 |
return summary[0]['summary_text']
|
17 |
|
18 |
if st.button("Generate"):
|
19 |
-
|
20 |
-
|
21 |
-
# Display the generated
|
22 |
-
st.subheader("Generated
|
23 |
-
st.write(
|
24 |
-
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import pipeline, TFAutoModelForSeq2SeqLM, T5Tokenizer
|
3 |
|
4 |
+
# Load T5 model for summarization
|
5 |
+
model_name = "t5-small"
|
6 |
+
model = TFAutoModelForSeq2SeqLM.from_pretrained(model_name)
|
7 |
+
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
8 |
+
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer)
|
9 |
|
10 |
# Set the title for the Streamlit app
|
11 |
st.title("T5 Summary Generator")
|
|
|
13 |
# Text input for the user
|
14 |
text = st.text_area("Enter your text: ")
|
15 |
|
16 |
+
def generate_summary(input_text):
|
17 |
+
# Perform summarization
|
18 |
+
summary = summarizer(input_text, max_length=150, min_length=40, do_sample=False)
|
|
|
19 |
return summary[0]['summary_text']
|
20 |
|
21 |
if st.button("Generate"):
|
22 |
+
if text:
|
23 |
+
generated_summary = generate_summary(text)
|
24 |
+
# Display the generated summary
|
25 |
+
st.subheader("Generated Summary")
|
26 |
+
st.write(generated_summary)
|
27 |
+
else:
|
28 |
+
st.warning("Please enter some text to generate a summary.")
|