Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import
|
3 |
import zipfile
|
4 |
import os
|
5 |
import nltk
|
@@ -8,7 +8,7 @@ import nltk
|
|
8 |
nltk.download('punkt')
|
9 |
from nltk.tokenize import sent_tokenize
|
10 |
|
11 |
-
# Define the path to the saved model zip file
|
12 |
zip_model_path = 'bart_model-20240724T051306Z-001.zip'
|
13 |
|
14 |
# Define the directory to extract the model
|
@@ -19,7 +19,7 @@ with zipfile.ZipFile(zip_model_path, 'r') as zip_ref:
|
|
19 |
zip_ref.extractall(model_dir)
|
20 |
|
21 |
# After unzipping, the model should be in a specific directory, check the directory structure
|
22 |
-
model_path = os.path.join(model_dir, '
|
23 |
|
24 |
# Print out the model_path for debugging
|
25 |
print("Model Path:", model_path)
|
@@ -28,9 +28,9 @@ print("Model Path:", model_path)
|
|
28 |
if not os.path.exists(model_path):
|
29 |
st.error(f"Model directory {model_path} does not exist or is incorrect.")
|
30 |
else:
|
31 |
-
# Load the tokenizer and model
|
32 |
-
tokenizer =
|
33 |
-
model =
|
34 |
|
35 |
# Create a summarization pipeline
|
36 |
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer)
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForConditionalGeneration, pipeline
|
3 |
import zipfile
|
4 |
import os
|
5 |
import nltk
|
|
|
8 |
nltk.download('punkt')
|
9 |
from nltk.tokenize import sent_tokenize
|
10 |
|
11 |
+
# Define the path to the saved model zip file (ensure there is no extra space)
|
12 |
zip_model_path = 'bart_model-20240724T051306Z-001.zip'
|
13 |
|
14 |
# Define the directory to extract the model
|
|
|
19 |
zip_ref.extractall(model_dir)
|
20 |
|
21 |
# After unzipping, the model should be in a specific directory, check the directory structure
|
22 |
+
model_path = os.path.join(model_dir, 'Bart_model')
|
23 |
|
24 |
# Print out the model_path for debugging
|
25 |
print("Model Path:", model_path)
|
|
|
28 |
if not os.path.exists(model_path):
|
29 |
st.error(f"Model directory {model_path} does not exist or is incorrect.")
|
30 |
else:
|
31 |
+
# Load the tokenizer and model using AutoTokenizer and AutoModelForConditionalGeneration
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
33 |
+
model = AutoModelForConditionalGeneration.from_pretrained(model_path)
|
34 |
|
35 |
# Create a summarization pipeline
|
36 |
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer)
|