Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
from datasets import load_dataset | |
ds = load_dataset("abisee/cnn_dailymail", "3.0.0") | |
t5_sum = pipeline("summarization", model= "t5-small") | |
# Set the title for the Streamlit app | |
st.title("T5 Summary Generator") | |
# Text input for the user | |
text = st.text_area("Enter your text: ") | |
def generate_summaries_and_context(dataset_sample): | |
article = dataset_sample | |
summary = summarizer(article, max_length=150, min_length=40, do_sample=False) | |
return summary[0]['summary_text'] | |
if st.button("Generate"): | |
generated_text = generate_text(text) | |
if generated_text: | |
# Display the generated text | |
st.subheader("Generated Blog Post") | |
st.write(generated_text) | |