sabssag's picture
Create app.py
76d8eeb verified
raw
history blame
750 Bytes
import streamlit as st
from transformers import pipeline
from datasets import load_dataset
ds = load_dataset("abisee/cnn_dailymail", "3.0.0")
t5_sum = pipeline("summarization", model= "t5-small")
# Set the title for the Streamlit app
st.title("T5 Summary Generator")
# Text input for the user
text = st.text_area("Enter your text: ")
def generate_summaries_and_context(dataset_sample):
article = dataset_sample
summary = summarizer(article, max_length=150, min_length=40, do_sample=False)
return summary[0]['summary_text']
if st.button("Generate"):
generated_text = generate_text(text)
if generated_text:
# Display the generated text
st.subheader("Generated Blog Post")
st.write(generated_text)