Spaces:
Sleeping
Sleeping
Ashley Andrea Squarcio
commited on
Commit
·
2fc692a
1
Parent(s):
486389e
Initial import: code, dependencies, chunk_index.pkl (LFS tracked)
Browse files- app.py +87 -0
- chunk_index.pkl +3 -0
- dspy_wrapper.py +71 -0
- main.py +34 -0
- neo4j_config.py +111 -0
- requirements.txt +156 -0
- retriever.py +222 -0
app.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from main import rag_pipeline
|
2 |
+
import gradio as gr
|
3 |
+
import html
|
4 |
+
|
5 |
+
|
6 |
+
municipalities = [
|
7 |
+
"Comun General de Fascia",
|
8 |
+
"Comune di Capo D'Orlando",
|
9 |
+
"Comune di Casatenovo",
|
10 |
+
"Comune di Fonte Nuova",
|
11 |
+
"Comune di Gubbio",
|
12 |
+
"Comune di Torre Santa Susanna",
|
13 |
+
"Comune di Santa Maria Capua Vetere"
|
14 |
+
]
|
15 |
+
|
16 |
+
def answer_fn(query: str, municipality: str):
|
17 |
+
# "All" or empty count as no filter
|
18 |
+
filters = {}
|
19 |
+
if municipality and municipality != "All":
|
20 |
+
filters["municipality"] = municipality
|
21 |
+
|
22 |
+
output = rag_pipeline(query=query, municipality=municipality)
|
23 |
+
|
24 |
+
final_answer = output["final_answer"]
|
25 |
+
cot = output["chain_of_thought"]
|
26 |
+
|
27 |
+
chunks = output["retrieved_chunks"]
|
28 |
+
html_blocks = []
|
29 |
+
for i, c in enumerate(chunks, 1):
|
30 |
+
text = html.escape(c["chunk_text"])
|
31 |
+
meta = {
|
32 |
+
"Document ID": c.get("document_id", "N/A"),
|
33 |
+
"Municipality": c.get("municipality", "N/A"),
|
34 |
+
"Section": c.get("section", "N/A"),
|
35 |
+
"Page": c.get("page", "N/A"),
|
36 |
+
"Score": f"{c.get('final_score', 0):.4f}"
|
37 |
+
}
|
38 |
+
|
39 |
+
# transforms metadata dictionary into a series of <li> (list) items
|
40 |
+
meta_lines = "".join(f"<li><b>{k}</b>: {v}</li>" for k, v in meta.items())
|
41 |
+
|
42 |
+
# displays chunk number as header, metadata and text
|
43 |
+
block = f"""
|
44 |
+
<div style="margin-bottom:1em;">
|
45 |
+
<h4>Chunk {i}</h4>
|
46 |
+
<ul>{meta_lines}</ul>
|
47 |
+
<p style="white-space: pre-wrap;">{text}</p>
|
48 |
+
</div>
|
49 |
+
<hr/>
|
50 |
+
"""
|
51 |
+
html_blocks.append(block)
|
52 |
+
chunks_html = "\n".join(html_blocks) or "<i>No chunks retrieved.</i>"
|
53 |
+
|
54 |
+
return final_answer, cot, chunks_html
|
55 |
+
|
56 |
+
|
57 |
+
with gr.Blocks() as demo:
|
58 |
+
gr.Markdown("## DSPy RAG Demo")
|
59 |
+
|
60 |
+
with gr.Row():
|
61 |
+
query_input = gr.Textbox(label="Question", placeholder="Type your query here…")
|
62 |
+
muni_input = gr.Dropdown(
|
63 |
+
choices=["All"] + municipalities,
|
64 |
+
value="All",
|
65 |
+
label="Municipality (optional)"
|
66 |
+
)
|
67 |
+
|
68 |
+
run_btn = gr.Button("Get Answer")
|
69 |
+
|
70 |
+
ans_out = gr.Textbox(label="Final Answer", lines=3) # answer container
|
71 |
+
|
72 |
+
# CoT container inside its accordion
|
73 |
+
with gr.Accordion("Chain of Thought Reasoning", open=False):
|
74 |
+
cot_txt = gr.Textbox(label="", interactive=False, lines=6)
|
75 |
+
|
76 |
+
# chunks HTML container inside its accordion
|
77 |
+
with gr.Accordion("Retrieved Chunks with Metadata", open=False):
|
78 |
+
chunks_html = gr.HTML("<i>No data yet.</i>")
|
79 |
+
|
80 |
+
# Wire the button click to the function (with outputs matching the order of returned values)
|
81 |
+
run_btn.click(
|
82 |
+
fn=answer_fn,
|
83 |
+
inputs=[query_input, muni_input],
|
84 |
+
outputs=[ans_out, cot_txt, chunks_html]
|
85 |
+
)
|
86 |
+
|
87 |
+
demo.launch(share=True)
|
chunk_index.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5962e522e6557c69c68ba22fc4d70487fc34b83cc6875be11b5e3564b3a38de1
|
3 |
+
size 17549445
|
dspy_wrapper.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dspy
|
2 |
+
from typing import List, Dict
|
3 |
+
import os
|
4 |
+
|
5 |
+
|
6 |
+
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
7 |
+
if not OPENAI_API_KEY:
|
8 |
+
raise RuntimeError("Missing OPENAI_API_KEY env var")
|
9 |
+
|
10 |
+
gpt_4o_mini = dspy.LM('openai/gpt-4o-mini', api_key=OPENAI_API_KEY)
|
11 |
+
# using unimib credentials, switch to PeS if needed!
|
12 |
+
dspy.configure(lm=gpt_4o_mini)
|
13 |
+
|
14 |
+
|
15 |
+
# == Building Blocks ==
|
16 |
+
class DSPyHybridRetriever(dspy.Module):
|
17 |
+
def __init__(self, retriever):
|
18 |
+
super().__init__()
|
19 |
+
self.retriever = retriever
|
20 |
+
|
21 |
+
def forward(self, query: str, municipality: str = "", top_k: int = 5):
|
22 |
+
results = self.retriever.retrieve(query, top_k=top_k, municipality_filter=municipality) # remember to change to rerank
|
23 |
+
return {"retrieved_chunks": results}
|
24 |
+
|
25 |
+
class RetrieveChunks(dspy.Signature):
|
26 |
+
"""Given a user query and optional municipality, retrieve relevant text chunks."""
|
27 |
+
query = dspy.InputField(desc="User's question")
|
28 |
+
municipality = dspy.InputField(desc="Optional municipality filter")
|
29 |
+
retrieved_chunks = dspy.OutputField(
|
30 |
+
desc=(
|
31 |
+
"List of retrieved chunks, each as a dict with keys: "
|
32 |
+
"`chunk`, `document_id`, `section`, `level`, `page`, "
|
33 |
+
"`dense_score`, `sparse_score`, `graph_score`, `final_score`"
|
34 |
+
),
|
35 |
+
type=List[Dict] # each item is a dict carrying all those fields
|
36 |
+
)
|
37 |
+
|
38 |
+
class AnswerWithEvidence(dspy.Signature):
|
39 |
+
"""Answer the query using reasoning and retrieved chunks as context."""
|
40 |
+
query = dspy.InputField(desc="User's question")
|
41 |
+
retrieved_chunks = dspy.InputField(desc="Retrieved text chunks (List[dict])")
|
42 |
+
answer = dspy.OutputField(desc="Final answer")
|
43 |
+
rationale = dspy.OutputField(desc="Chain-of-thought reasoning")
|
44 |
+
|
45 |
+
|
46 |
+
# == RAG Pipeline ==
|
47 |
+
class RAGChain(dspy.Module):
|
48 |
+
def __init__(self, retriever, answerer):
|
49 |
+
super().__init__()
|
50 |
+
self.retriever = retriever
|
51 |
+
self.answerer = answerer
|
52 |
+
|
53 |
+
def forward(self, query: str, municipality: str = ""):
|
54 |
+
# retrieve full dicts
|
55 |
+
retrieved = self.retriever(query=query, municipality=municipality)
|
56 |
+
chunks = retrieved["retrieved_chunks"]
|
57 |
+
|
58 |
+
# feed only the raw text into the CoT module
|
59 |
+
answer_result = self.answerer(
|
60 |
+
query=query,
|
61 |
+
retrieved_chunks=[c["chunk_text"] for c in chunks]
|
62 |
+
)
|
63 |
+
|
64 |
+
# return both the metadata and the LLM answer
|
65 |
+
return {
|
66 |
+
"query": query,
|
67 |
+
"municipality": municipality,
|
68 |
+
"retrieved_chunks": chunks,
|
69 |
+
"chain_of_thought": answer_result.rationale,
|
70 |
+
"final_answer": answer_result.answer,
|
71 |
+
}
|
main.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from neo4j_config import URI, USER, PASSWORD, AUTH
|
2 |
+
from retriever import *
|
3 |
+
from dspy_wrapper import *
|
4 |
+
from neo4j import GraphDatabase
|
5 |
+
import os, pickle
|
6 |
+
|
7 |
+
|
8 |
+
# == Fast Load of Precomputed Index ==
|
9 |
+
HERE = os.path.dirname(__file__)
|
10 |
+
with open(os.path.join(HERE, "chunk_index.pkl"), "rb") as f:
|
11 |
+
all_chunks = pickle.load(f) # already contain embeddings and ids
|
12 |
+
|
13 |
+
|
14 |
+
# == Neo4j Setup ==
|
15 |
+
with GraphDatabase.driver(URI, auth=AUTH) as driver:
|
16 |
+
driver.verify_connectivity()
|
17 |
+
|
18 |
+
|
19 |
+
# == Retrieval ==
|
20 |
+
retriever = HybridRetriever(all_chunks)
|
21 |
+
|
22 |
+
reranker = GraphReranker(
|
23 |
+
retriever,
|
24 |
+
neo4j_uri=URI,
|
25 |
+
neo4j_user=USER,
|
26 |
+
neo4j_pass=PASSWORD,
|
27 |
+
beta=0.2,
|
28 |
+
max_hops=3
|
29 |
+
)
|
30 |
+
|
31 |
+
# == Pipeline Initialization ==
|
32 |
+
retriever_module = DSPyHybridRetriever(retriever)
|
33 |
+
cot_module = dspy.ChainOfThought(AnswerWithEvidence)
|
34 |
+
rag_pipeline = RAGChain(retriever=retriever_module, answerer=cot_module)
|
neo4j_config.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from neo4j import GraphDatabase
|
3 |
+
|
4 |
+
|
5 |
+
URI = "neo4j+s://1ea442ce.databases.neo4j.io"
|
6 |
+
USER = "neo4j"
|
7 |
+
PASSWORD = "diGxvEhJnqcp18rHDwPzGv1KaRvxprUvdD1h31unwa8"
|
8 |
+
AUTH = (USER, PASSWORD)
|
9 |
+
|
10 |
+
with GraphDatabase.driver(URI, auth=AUTH) as driver:
|
11 |
+
driver.verify_connectivity()
|
12 |
+
|
13 |
+
|
14 |
+
def normalize_int(value, default=0):
|
15 |
+
"""
|
16 |
+
Safely convert value to int.
|
17 |
+
- If already int, return it.
|
18 |
+
- If str of digits, parse it.
|
19 |
+
- Otherwise return `default`.
|
20 |
+
"""
|
21 |
+
if isinstance(value, int):
|
22 |
+
return value
|
23 |
+
if isinstance(value, str) and value.isdigit():
|
24 |
+
return int(value)
|
25 |
+
# optionally, extract digits from strings like "1.":
|
26 |
+
m = re.match(r"(\d+)", str(value))
|
27 |
+
if m:
|
28 |
+
return int(m.group(1))
|
29 |
+
return default
|
30 |
+
|
31 |
+
|
32 |
+
def add_municipality(tx, municipality):
|
33 |
+
tx.run("""
|
34 |
+
MERGE (m:Municipality {name: $municipality})
|
35 |
+
""", municipality=municipality)
|
36 |
+
|
37 |
+
def add_document(tx, doc_id, municipality):
|
38 |
+
tx.run("""
|
39 |
+
MATCH (m:Municipality {name: $municipality})
|
40 |
+
MERGE (d:Document {doc_id: $doc_id})
|
41 |
+
MERGE (m)-[:HAS_DOCUMENT]->(d)
|
42 |
+
""", municipality=municipality, doc_id=doc_id)
|
43 |
+
|
44 |
+
def add_chunk(tx, chunk):
|
45 |
+
tx.run("""
|
46 |
+
MATCH (d:Document {doc_id: $doc_id})
|
47 |
+
MERGE (c:Chunk {id: $id})
|
48 |
+
SET c.page = $page,
|
49 |
+
c.section = $section,
|
50 |
+
c.level = $level,
|
51 |
+
c.text = $text,
|
52 |
+
c.embedding = $embedding
|
53 |
+
MERGE (d)-[:HAS_CHUNK]->(c)
|
54 |
+
""", id=chunk["id"], doc_id=chunk["document_id"],
|
55 |
+
page=chunk["page"], section=chunk["section"],
|
56 |
+
level=chunk["level"], text=chunk["chunk_text"],
|
57 |
+
embedding=chunk["embedding"])
|
58 |
+
|
59 |
+
def link_parent(tx, parent_id, child_id):
|
60 |
+
tx.run("""
|
61 |
+
MATCH (p:Chunk {id: $parent_id}), (c:Chunk {id: $child_id})
|
62 |
+
MERGE (p)-[:HAS_SUBSECTION]->(c)
|
63 |
+
""", parent_id=parent_id, child_id=child_id)
|
64 |
+
|
65 |
+
def link_sibling(tx, sibling1_id, sibling2_id):
|
66 |
+
tx.run("""
|
67 |
+
MATCH (c1:Chunk {id: $sibling1_id}), (c2:Chunk {id: $sibling2_id})
|
68 |
+
MERGE (c1)-[:NEXT_TO]->(c2)
|
69 |
+
""", sibling1_id=sibling1_id, sibling2_id=sibling2_id)
|
70 |
+
|
71 |
+
# takes again quite some time to compute, we could re-download a pkl file with ids as well
|
72 |
+
def sync_chunk_ids(all_chunks, driver, prefix_len=50):
|
73 |
+
"""
|
74 |
+
For each chunk in-memory, look up its real DB id by matching on:
|
75 |
+
- page
|
76 |
+
- section
|
77 |
+
- the first `prefix_len` chars of text
|
78 |
+
|
79 |
+
If already present, overwrites chunk["id"] with the DB value when found,
|
80 |
+
otherwise retrieves the id from the graph db and adds it to each chunk's dict.
|
81 |
+
"""
|
82 |
+
with driver.session() as session:
|
83 |
+
for chunk in all_chunks:
|
84 |
+
# build prefix of the chunk text
|
85 |
+
prefix = chunk["chunk_text"][:prefix_len]
|
86 |
+
# normalize numeric props
|
87 |
+
page = normalize_int(chunk.get("page"))
|
88 |
+
|
89 |
+
cypher = """
|
90 |
+
MATCH (c:Chunk {
|
91 |
+
page: $page,
|
92 |
+
section: $section
|
93 |
+
})
|
94 |
+
WHERE c.text STARTS WITH $prefix
|
95 |
+
RETURN c.id AS real_id
|
96 |
+
LIMIT 1
|
97 |
+
"""
|
98 |
+
params = {
|
99 |
+
"page": page,
|
100 |
+
"section": chunk["section"],
|
101 |
+
"prefix": prefix
|
102 |
+
}
|
103 |
+
|
104 |
+
rec = session.run(cypher, params).single()
|
105 |
+
if rec:
|
106 |
+
chunk["id"] = rec["real_id"]
|
107 |
+
else:
|
108 |
+
print(f"No DB match for chunk: page={page} "
|
109 |
+
f"section={chunk.get('section')!r} prefix={prefix!r}")
|
110 |
+
|
111 |
+
## CHUNK INGESTION CODE NOT PRESENT HERE!! CHECK COLAB NB!
|
requirements.txt
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiofiles==24.1.0
|
2 |
+
aiohappyeyeballs==2.6.1
|
3 |
+
aiohttp==3.11.18
|
4 |
+
aiosignal==1.3.2
|
5 |
+
alembic==1.15.2
|
6 |
+
altair==5.5.0
|
7 |
+
annotated-types==0.7.0
|
8 |
+
anyio==4.9.0
|
9 |
+
appnope==0.1.4
|
10 |
+
asttokens==3.0.0
|
11 |
+
asyncer==0.0.8
|
12 |
+
attrs==25.3.0
|
13 |
+
backoff==2.2.1
|
14 |
+
blinker==1.9.0
|
15 |
+
cachetools==5.5.2
|
16 |
+
certifi==2025.4.26
|
17 |
+
cffi==1.17.1
|
18 |
+
charset-normalizer==3.4.2
|
19 |
+
click==8.1.8
|
20 |
+
cloudpickle==3.1.1
|
21 |
+
colorlog==6.9.0
|
22 |
+
comm==0.2.2
|
23 |
+
cryptography==44.0.3
|
24 |
+
datasets==3.5.1
|
25 |
+
debugpy==1.8.14
|
26 |
+
decorator==5.2.1
|
27 |
+
dill==0.3.8
|
28 |
+
diskcache==5.6.3
|
29 |
+
distro==1.9.0
|
30 |
+
dspy==2.6.14
|
31 |
+
dspy-ai==2.6.23
|
32 |
+
executing==2.2.0
|
33 |
+
faiss-cpu==1.11.0
|
34 |
+
fastapi==0.115.12
|
35 |
+
ffmpy==0.5.0
|
36 |
+
filelock==3.18.0
|
37 |
+
frozenlist==1.6.0
|
38 |
+
fsspec==2025.3.0
|
39 |
+
gitdb==4.0.12
|
40 |
+
GitPython==3.1.44
|
41 |
+
gradio==5.30.0
|
42 |
+
gradio_client==1.10.1
|
43 |
+
groovy==0.1.2
|
44 |
+
h11==0.16.0
|
45 |
+
httpcore==1.0.9
|
46 |
+
httpx==0.28.1
|
47 |
+
huggingface-hub==0.30.2
|
48 |
+
idna==3.10
|
49 |
+
importlib_metadata==8.7.0
|
50 |
+
ipykernel==6.29.5
|
51 |
+
ipython>=8,<9
|
52 |
+
ipython_pygments_lexers==1.1.1
|
53 |
+
jedi==0.19.2
|
54 |
+
Jinja2==3.1.6
|
55 |
+
jiter==0.9.0
|
56 |
+
joblib==1.5.0
|
57 |
+
json_repair==0.44.1
|
58 |
+
jsonschema==4.23.0
|
59 |
+
jsonschema-specifications==2025.4.1
|
60 |
+
jupyter_client==8.6.3
|
61 |
+
jupyter_core==5.7.2
|
62 |
+
litellm==1.63.7
|
63 |
+
magicattr==0.1.6
|
64 |
+
Mako==1.3.10
|
65 |
+
markdown-it-py==3.0.0
|
66 |
+
MarkupSafe==3.0.2
|
67 |
+
matplotlib-inline==0.1.7
|
68 |
+
mdurl==0.1.2
|
69 |
+
mpmath==1.3.0
|
70 |
+
multidict==6.4.3
|
71 |
+
multiprocess==0.70.16
|
72 |
+
narwhals==1.38.0
|
73 |
+
neo4j==5.28.1
|
74 |
+
nest-asyncio==1.6.0
|
75 |
+
networkx==3.4.2
|
76 |
+
numpy==2.2.5
|
77 |
+
openai==1.61.0
|
78 |
+
optuna==4.3.0
|
79 |
+
orjson==3.10.18
|
80 |
+
packaging==24.2
|
81 |
+
pandas==2.2.3
|
82 |
+
parso==0.8.4
|
83 |
+
pdfminer.six==20250327
|
84 |
+
pdfplumber==0.11.6
|
85 |
+
pexpect==4.9.0
|
86 |
+
pillow==11.2.1
|
87 |
+
platformdirs==4.3.7
|
88 |
+
prompt_toolkit==3.0.51
|
89 |
+
propcache==0.3.1
|
90 |
+
protobuf==6.30.2
|
91 |
+
psutil==7.0.0
|
92 |
+
ptyprocess==0.7.0
|
93 |
+
pure_eval==0.2.3
|
94 |
+
pyarrow==20.0.0
|
95 |
+
pycparser==2.22
|
96 |
+
pydantic==2.11.4
|
97 |
+
pydantic_core==2.33.2
|
98 |
+
pydeck==0.9.1
|
99 |
+
pydub==0.25.1
|
100 |
+
Pygments==2.19.1
|
101 |
+
PyMuPDF==1.25.5
|
102 |
+
PyPDF2==3.0.1
|
103 |
+
pypdfium2==4.30.1
|
104 |
+
python-dateutil==2.9.0.post0
|
105 |
+
python-dotenv==1.1.0
|
106 |
+
python-multipart==0.0.20
|
107 |
+
pytz==2025.2
|
108 |
+
PyYAML==6.0.2
|
109 |
+
pyzmq==26.4.0
|
110 |
+
RapidFuzz==3.13.0
|
111 |
+
referencing==0.36.2
|
112 |
+
regex==2024.11.6
|
113 |
+
requests==2.32.3
|
114 |
+
rich==14.0.0
|
115 |
+
rpds-py==0.24.0
|
116 |
+
ruff==0.11.10
|
117 |
+
safehttpx==0.1.6
|
118 |
+
safetensors==0.5.3
|
119 |
+
scikit-learn==1.6.1
|
120 |
+
scipy==1.15.2
|
121 |
+
semantic-version==2.10.0
|
122 |
+
sentence-transformers==4.1.0
|
123 |
+
setuptools==80.3.1
|
124 |
+
shellingham==1.5.4
|
125 |
+
six==1.17.0
|
126 |
+
sklearn-preprocessing==0.1.0
|
127 |
+
smmap==5.0.2
|
128 |
+
sniffio==1.3.1
|
129 |
+
SQLAlchemy==2.0.40
|
130 |
+
stack-data==0.6.3
|
131 |
+
starlette==0.46.2
|
132 |
+
streamlit==1.45.0
|
133 |
+
sympy==1.14.0
|
134 |
+
tenacity==9.1.2
|
135 |
+
threadpoolctl==3.6.0
|
136 |
+
tiktoken==0.9.0
|
137 |
+
tokenizers==0.21.1
|
138 |
+
toml==0.10.2
|
139 |
+
tomlkit==0.13.2
|
140 |
+
torch==2.7.0
|
141 |
+
tornado==6.4.2
|
142 |
+
tqdm==4.67.1
|
143 |
+
traitlets==5.14.3
|
144 |
+
transformers==4.51.3
|
145 |
+
typer==0.15.4
|
146 |
+
typing-inspection==0.4.0
|
147 |
+
typing_extensions==4.13.2
|
148 |
+
tzdata==2025.2
|
149 |
+
ujson==5.10.0
|
150 |
+
urllib3==2.4.0
|
151 |
+
uvicorn==0.34.2
|
152 |
+
wcwidth==0.2.13
|
153 |
+
websockets==15.0.1
|
154 |
+
xxhash==3.5.0
|
155 |
+
yarl==1.20.0
|
156 |
+
zipp==3.21.0
|
retriever.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import faiss
|
2 |
+
import re
|
3 |
+
import numpy as np
|
4 |
+
from typing import List, Dict
|
5 |
+
from sklearn.preprocessing import normalize
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
8 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
9 |
+
from rapidfuzz import fuzz
|
10 |
+
from neo4j import GraphDatabase
|
11 |
+
|
12 |
+
|
13 |
+
embedding_model = SentenceTransformer('nickprock/multi-sentence-BERTino')
|
14 |
+
embedding_dim = embedding_model.get_sentence_embedding_dimension()
|
15 |
+
|
16 |
+
# == Base Hybrid Retriever (Dense + Sparse) ==
|
17 |
+
class HybridRetriever:
|
18 |
+
def __init__(self, chunks: List[Dict]):
|
19 |
+
self.raw_chunks = chunks
|
20 |
+
|
21 |
+
# load precomputed embeddings (with bertino)
|
22 |
+
print("Loading dense embeddings from chunks...")
|
23 |
+
dense_embeddings = np.vstack([
|
24 |
+
chunk["embedding"] for chunk in chunks
|
25 |
+
])
|
26 |
+
self.embeddings = normalize(dense_embeddings, axis=1, norm='l2') # l2 normalization for cosine similarity
|
27 |
+
|
28 |
+
print("Fitting FAISS index...")
|
29 |
+
self.index = faiss.IndexFlatIP(self.embeddings.shape[1])
|
30 |
+
self.index.add(self.embeddings)
|
31 |
+
|
32 |
+
print("Fitting TF-IDF vectorizer...")
|
33 |
+
self.texts = [chunk["chunk_text"] for chunk in chunks]
|
34 |
+
self.vectorizer = TfidfVectorizer(stop_words=None)
|
35 |
+
self.sparse_matrix = self.vectorizer.fit_transform(self.texts)
|
36 |
+
|
37 |
+
# this is just a temporary hard-coded fix for correctly matching this municipality in the UI retrieval,
|
38 |
+
# since ' is still not recognized in municipality extraction
|
39 |
+
self._overrides = {
|
40 |
+
"capo d orlando": "capo d"
|
41 |
+
}
|
42 |
+
|
43 |
+
def fuzzy_match(self, municipality_ref, user_input, threshold=80):
|
44 |
+
"""
|
45 |
+
Fuzzy-matches stored municipality against user input.
|
46 |
+
Uses rapidfuzz for accurate and fast matching.
|
47 |
+
"""
|
48 |
+
# Normalize both strings
|
49 |
+
def normalize(text):
|
50 |
+
text = text.lower()
|
51 |
+
# remove common prefixes
|
52 |
+
for prefix in ("comune di ", "comuni di ", "città di ", "citta di "):
|
53 |
+
if text.startswith(prefix):
|
54 |
+
text = text[len(prefix):]
|
55 |
+
# strip out non-alphanumeric characters
|
56 |
+
text = re.sub(r"[^a-z0-9]+", " ", text)
|
57 |
+
return re.sub(r"\s+", " ", text).strip()
|
58 |
+
|
59 |
+
ref = normalize(municipality_ref)
|
60 |
+
inp = normalize(user_input)
|
61 |
+
|
62 |
+
# override check: if the normalized input matches a key, force match
|
63 |
+
if inp in self._overrides:
|
64 |
+
# normalize the override target and compare to this ref
|
65 |
+
override_target = normalize(self._overrides[inp])
|
66 |
+
if ref == override_target:
|
67 |
+
return True
|
68 |
+
|
69 |
+
# Compute fuzzy match score
|
70 |
+
score = fuzz.ratio(ref, inp)
|
71 |
+
|
72 |
+
return score >= threshold
|
73 |
+
|
74 |
+
def retrieve(self, query, top_k=5, municipality_filter=None, alpha=0.8, threshold=0.3):
|
75 |
+
print("Starting hybrid retrieval...")
|
76 |
+
|
77 |
+
query_embedding = embedding_model.encode([query], convert_to_numpy=True)
|
78 |
+
query_embedding = normalize(query_embedding, axis=1, norm='l2') # query also needs l2 normalization
|
79 |
+
|
80 |
+
query_tfidf = self.vectorizer.transform([query])
|
81 |
+
sparse_sim = cosine_similarity(query_tfidf, self.sparse_matrix).flatten()
|
82 |
+
|
83 |
+
D, I = self.index.search(query_embedding, top_k * 5)
|
84 |
+
|
85 |
+
results = []
|
86 |
+
seen = set()
|
87 |
+
for rank, idx in enumerate(I[0]):
|
88 |
+
if idx in seen:
|
89 |
+
continue
|
90 |
+
seen.add(idx)
|
91 |
+
|
92 |
+
# Enforce municipality constraint
|
93 |
+
if municipality_filter:
|
94 |
+
stored = self.raw_chunks[idx].get("municipality", "")
|
95 |
+
if not self.fuzzy_match(stored, municipality_filter):
|
96 |
+
continue
|
97 |
+
|
98 |
+
dense_score = D[0][rank]
|
99 |
+
sparse_score = sparse_sim[idx]
|
100 |
+
hybrid_score = alpha * dense_score + (1 - alpha) * sparse_score
|
101 |
+
|
102 |
+
if hybrid_score < threshold:
|
103 |
+
continue
|
104 |
+
|
105 |
+
results.append({
|
106 |
+
**self.raw_chunks[idx], # appends all chunk properties to the output (including id and embedding!)
|
107 |
+
"dense_score": dense_score,
|
108 |
+
"sparse_score": sparse_score,
|
109 |
+
"hybrid_score": hybrid_score
|
110 |
+
})
|
111 |
+
|
112 |
+
if len(results) >= top_k:
|
113 |
+
break
|
114 |
+
|
115 |
+
# Fallback if nothing survived the threshold/filtering
|
116 |
+
if not results:
|
117 |
+
print(f"No results above threshold for '{municipality_filter}'. Falling back to top-{top_k}.")
|
118 |
+
results = []
|
119 |
+
for rank, idx in enumerate(I[0][:top_k]):
|
120 |
+
dense_score = D[0][rank]
|
121 |
+
sparse_score = sparse_sim[idx]
|
122 |
+
hybrid_score = alpha * dense_score + (1 - alpha) * sparse_score
|
123 |
+
results.append({
|
124 |
+
**self.raw_chunks[idx],
|
125 |
+
"dense_score": dense_score,
|
126 |
+
"sparse_score": sparse_score,
|
127 |
+
"hybrid_score": hybrid_score
|
128 |
+
})
|
129 |
+
|
130 |
+
# Return sorted top-k
|
131 |
+
top_results = sorted(results, key=lambda x: x["hybrid_score"], reverse=True)[:top_k]
|
132 |
+
return top_results
|
133 |
+
|
134 |
+
|
135 |
+
# == Graph Reranker ==
|
136 |
+
class GraphReranker:
|
137 |
+
def __init__(
|
138 |
+
self,
|
139 |
+
base_retriever,
|
140 |
+
neo4j_uri: str,
|
141 |
+
neo4j_user: str,
|
142 |
+
neo4j_pass: str,
|
143 |
+
beta: float = 0.2,
|
144 |
+
max_hops: int = 3
|
145 |
+
):
|
146 |
+
"""
|
147 |
+
base_retriever: instance of HybridRetriever
|
148 |
+
beta: weight for the graph component
|
149 |
+
max_hops: how many hops we'll search in shortestPath()
|
150 |
+
"""
|
151 |
+
self.base = base_retriever
|
152 |
+
self.beta = beta
|
153 |
+
self.max_hops = max_hops
|
154 |
+
self.driver = GraphDatabase.driver(neo4j_uri, auth=(neo4j_user, neo4j_pass))
|
155 |
+
|
156 |
+
def graph_score(self, candidate_id: str, seed_ids: list[str]) -> float:
|
157 |
+
"""
|
158 |
+
Uses built-in shortestPath() over HAS_SUBSECTION|NEXT_TO
|
159 |
+
with a literal max_hops in the relationship pattern.
|
160 |
+
"""
|
161 |
+
rel_pat = f"[:HAS_SUBSECTION|NEXT_TO*..{self.max_hops}]"
|
162 |
+
query = f"""
|
163 |
+
MATCH p = shortestPath(
|
164 |
+
(seed:Chunk {{id: $seed_id}})-{rel_pat}-(cand:Chunk {{id: $cand_id}})
|
165 |
+
)
|
166 |
+
RETURN length(p) AS hops
|
167 |
+
"""
|
168 |
+
min_hops = None
|
169 |
+
with self.driver.session() as sess:
|
170 |
+
for sid in seed_ids:
|
171 |
+
# Skip self, don’t count seed==candidate
|
172 |
+
if sid == candidate_id:
|
173 |
+
continue
|
174 |
+
|
175 |
+
rec = sess.run(
|
176 |
+
query,
|
177 |
+
{"seed_id": sid, "cand_id": candidate_id}
|
178 |
+
).single()
|
179 |
+
if rec and rec["hops"] is not None:
|
180 |
+
h = rec["hops"]
|
181 |
+
if min_hops is None or h < min_hops:
|
182 |
+
min_hops = h
|
183 |
+
|
184 |
+
# If no path found to any OTHER seed, score is 0
|
185 |
+
return 0.0 if min_hops is None else 1.0 / (1 + min_hops)
|
186 |
+
|
187 |
+
def rerank(
|
188 |
+
self,
|
189 |
+
query: str,
|
190 |
+
top_k: int = 5,
|
191 |
+
municipality_filter: str | None = None,
|
192 |
+
alpha: float = 0.8,
|
193 |
+
threshold: float = 0.3
|
194 |
+
) -> list[dict]:
|
195 |
+
"""
|
196 |
+
1. Pull a broader set of text-only candidates
|
197 |
+
2. Compute graph_score for each
|
198 |
+
3. Blend and return the top_k final results
|
199 |
+
"""
|
200 |
+
raw_cands = self.base.retrieve(
|
201 |
+
query,
|
202 |
+
top_k=top_k * 5, # more candidates than top_k to give material to the graph
|
203 |
+
municipality_filter=municipality_filter,
|
204 |
+
alpha=alpha,
|
205 |
+
threshold=threshold
|
206 |
+
)
|
207 |
+
|
208 |
+
# extract seed IDs from the first top_k (best text‐only hits)
|
209 |
+
seed_ids = [c["id"] for c in raw_cands[:top_k]]
|
210 |
+
|
211 |
+
# compute graph_score for each candidate
|
212 |
+
enriched = []
|
213 |
+
for cand in raw_cands:
|
214 |
+
g = self.graph_score(cand["id"], seed_ids)
|
215 |
+
basic = cand.get("hybrid_score",
|
216 |
+
alpha * cand["dense_score"] + (1-alpha) * cand["sparse_score"])
|
217 |
+
final = basic + self.beta * g
|
218 |
+
enriched.append({ **cand,
|
219 |
+
"graph_score": g,
|
220 |
+
"final_score": final })
|
221 |
+
|
222 |
+
return sorted(enriched, key=lambda x: x["final_score"], reverse=True)[:top_k]
|