saadiiii commited on
Commit
ac113ff
·
1 Parent(s): 4eaf4ba

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -10
app.py CHANGED
@@ -12,23 +12,27 @@ from pymongo import MongoClient
12
  from transformers import AutoTokenizer
13
  tokenizer = AutoTokenizer.from_pretrained("law-ai/InLegalBERT")
14
 
15
- model_preamble = torch.load("nerbert_preamble.pt")
16
- model_judgment = torch.load("nerbert.pt")
17
-
18
  from transformers import BertForTokenClassification
19
- # class BertModel(torch.nn.Module):
 
 
20
 
21
- # def __init__(self):
22
 
23
- # super(BertModel, self).__init__()
24
 
25
- # self.bert = BertForTokenClassification.from_pretrained('law-ai/InLegalBERT', num_labels=len(unique_labels))
26
 
27
- # def forward(self, input_id, mask, label):
28
 
29
- # output = self.bert(input_ids=input_id, attention_mask=mask, labels=label, return_dict=False)
 
 
 
 
 
 
30
 
31
- # return output
32
 
33
  unique_labels_preamble = {'I-PETITIONER', 'I-COURT', 'B-COURT', 'B-JUDGE', 'I-LAWYER', 'B-RESPONDENT', 'I-JUDGE', 'B-PETITIONER', 'I-RESPONDENT', 'B-LAWYER', 'O'}
34
  unique_labels_judgment = {'B-WITNESS', 'I-PETITIONER', 'I-JUDGE', 'B-STATUTE', 'B-OTHER_PERSON', 'B-CASE_NUMBER', 'I-ORG', 'I-PRECEDENT', 'I-RESPONDENT', 'B-PROVISION', 'O', 'I-WITNESS', 'B-ORG', 'I-COURT', 'B-RESPONDENT', 'I-DATE', 'B-GPE', 'I-CASE_NUMBER', 'B-DATE', 'B-PRECEDENT', 'I-GPE', 'B-COURT', 'B-JUDGE', 'I-STATUTE', 'B-PETITIONER', 'I-OTHER_PERSON', 'I-PROVISION'}
 
12
  from transformers import AutoTokenizer
13
  tokenizer = AutoTokenizer.from_pretrained("law-ai/InLegalBERT")
14
 
 
 
 
15
  from transformers import BertForTokenClassification
16
+ class BertModel(torch.nn.Module):
17
+
18
+ def __init__(self):
19
 
20
+ super(BertModel, self).__init__()
21
 
22
+ self.bert = BertForTokenClassification.from_pretrained('law-ai/InLegalBERT', num_labels=len(unique_labels))
23
 
24
+ def forward(self, input_id, mask, label):
25
 
26
+ output = self.bert(input_ids=input_id, attention_mask=mask, labels=label, return_dict=False)
27
 
28
+ return output
29
+
30
+ model_preamble = BertModel()
31
+ model_preamble = torch.load("nerbert_preamble.pt")
32
+
33
+ model_judgment = BertModel()
34
+ model_judgment = torch.load("nerbert.pt")
35
 
 
36
 
37
  unique_labels_preamble = {'I-PETITIONER', 'I-COURT', 'B-COURT', 'B-JUDGE', 'I-LAWYER', 'B-RESPONDENT', 'I-JUDGE', 'B-PETITIONER', 'I-RESPONDENT', 'B-LAWYER', 'O'}
38
  unique_labels_judgment = {'B-WITNESS', 'I-PETITIONER', 'I-JUDGE', 'B-STATUTE', 'B-OTHER_PERSON', 'B-CASE_NUMBER', 'I-ORG', 'I-PRECEDENT', 'I-RESPONDENT', 'B-PROVISION', 'O', 'I-WITNESS', 'B-ORG', 'I-COURT', 'B-RESPONDENT', 'I-DATE', 'B-GPE', 'I-CASE_NUMBER', 'B-DATE', 'B-PRECEDENT', 'I-GPE', 'B-COURT', 'B-JUDGE', 'I-STATUTE', 'B-PETITIONER', 'I-OTHER_PERSON', 'I-PROVISION'}