|
from transformers import AutoTokenizer, TFAutoModelForSequenceClassification |
|
import streamlit as st |
|
import os |
|
import tensorflow as tf |
|
from absl import logging |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("snunlp/KR-FinBert-SC") |
|
model = TFAutoModelForSequenceClassification.from_pretrained("snunlp/KR-FinBert-SC") |
|
|
|
|
|
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' |
|
|
|
|
|
logging.set_verbosity(logging.INFO) |
|
logging.use_absl_handler() |
|
|
|
|
|
print("TensorFlow ๋ฒ์ :", tf.__version__) |
|
print("์ฌ์ฉ ๊ฐ๋ฅํ ์ฅ์น:", tf.config.list_physical_devices()) |
|
|
|
|
|
st.title("Hello, Streamlit!") |
|
st.write("This is a sample Streamlit app.") |
|
|
|
|
|
input_text = st.text_input("Enter some text:") |
|
if st.button("Analyze"): |
|
try: |
|
inputs = tokenizer(input_text, return_tensors="tf") |
|
outputs = model(**inputs) |
|
st.write("Model Output:", outputs.logits.numpy().tolist()) |
|
except Exception as e: |
|
st.error(f"Error during model inference: {e}") |
|
|