description: Train VQ on Bird Dataset auth: # which virtual cluster you belong to (msrlabs, etc.). Everyone has access to "pnrsy". vc: msrlabspvc12 # msrlabs # physical cluster to use (cam, gcr, rr1) or Azure clusters (eu1, eu2, etc.) # cluster: rr2, eu2, eu1 et1 cluster: eu2 # docker environment (vm) in which your job will run. we provide "generic" dockers # with the main deep learning toolkit installed (PyTorch, TF, Chainer, etc.) docker: # image: philly/jobs/custom/generic-docker:py27 # registry: phillyregistry.azurecr.io image: vlnres/vqvae:v1 # chunyl/vqvae:v2 registry: index.docker.io storage: _default: #use_phillyfs: True storage_account_name: sslm container_name: vqvae mount_path: /mnt/_default code: # local directory of the code. this will be uploaded to the server. # $CONFIG_DIR is expanded to the directory of this config file code_upload: False remote_dir: vq-vae-2-pytorch/ local_dir: $CONFIG_DIR/src #data: # data upload is not required for this example #data_upload: False search: job_template: name: vq_{experiment_name:s}_{image_size_option:.1f} sku: G4 # G4 # G1 command: - python train_vqvae.py --philly --dataset_name bird --size {image_size_option} --batch 512 max_trials: 20 type: grid params: - name: image_size_option spec: discrete values: [64,128] # [top,bottom]