# coding=utf-8 # Copyright 2019-present, the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Preprocessing script before training DistilBERT. """ from pytorch_transformers import BertForMaskedLM, RobertaForMaskedLM import torch import argparse if __name__ == '__main__': parser = argparse.ArgumentParser(description="Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned Distillation") parser.add_argument("--model_type", default="bert", choices=["bert", "roberta"]) parser.add_argument("--model_name", default='bert-base-uncased', type=str) parser.add_argument("--dump_checkpoint", default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument("--vocab_transform", action='store_true') args = parser.parse_args() if args.model_type == 'bert': model = BertForMaskedLM.from_pretrained(args.model_name) prefix = 'bert' elif args.model_type == 'roberta': model = RobertaForMaskedLM.from_pretrained(args.model_name) prefix = 'roberta' state_dict = model.state_dict() compressed_sd = {} for w in ['word_embeddings', 'position_embeddings']: compressed_sd[f'distilbert.embeddings.{w}.weight'] = \ state_dict[f'{prefix}.embeddings.{w}.weight'] for w in ['weight', 'bias']: compressed_sd[f'distilbert.embeddings.LayerNorm.{w}'] = \ state_dict[f'{prefix}.embeddings.LayerNorm.{w}'] std_idx = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ['weight', 'bias']: compressed_sd[f'distilbert.transformer.layer.{std_idx}.attention.q_lin.{w}'] = \ state_dict[f'{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}'] compressed_sd[f'distilbert.transformer.layer.{std_idx}.attention.k_lin.{w}'] = \ state_dict[f'{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}'] compressed_sd[f'distilbert.transformer.layer.{std_idx}.attention.v_lin.{w}'] = \ state_dict[f'{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}'] compressed_sd[f'distilbert.transformer.layer.{std_idx}.attention.out_lin.{w}'] = \ state_dict[f'{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}'] compressed_sd[f'distilbert.transformer.layer.{std_idx}.sa_layer_norm.{w}'] = \ state_dict[f'{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}'] compressed_sd[f'distilbert.transformer.layer.{std_idx}.ffn.lin1.{w}'] = \ state_dict[f'{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}'] compressed_sd[f'distilbert.transformer.layer.{std_idx}.ffn.lin2.{w}'] = \ state_dict[f'{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}'] compressed_sd[f'distilbert.transformer.layer.{std_idx}.output_layer_norm.{w}'] = \ state_dict[f'{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}'] std_idx += 1 if args.model_type == 'bert': compressed_sd[f'vocab_projector.weight'] = state_dict[f'cls.predictions.decoder.weight'] compressed_sd[f'vocab_projector.bias'] = state_dict[f'cls.predictions.bias'] if args.vocab_transform: for w in ['weight', 'bias']: compressed_sd[f'vocab_transform.{w}'] = state_dict[f'cls.predictions.transform.dense.{w}'] compressed_sd[f'vocab_layer_norm.{w}'] = state_dict[f'cls.predictions.transform.LayerNorm.{w}'] elif args.model_type == 'roberta': compressed_sd[f'vocab_projector.weight'] = state_dict[f'lm_head.decoder.weight'] compressed_sd[f'vocab_projector.bias'] = state_dict[f'lm_head.bias'] if args.vocab_transform: for w in ['weight', 'bias']: compressed_sd[f'vocab_transform.{w}'] = state_dict[f'lm_head.dense.{w}'] compressed_sd[f'vocab_layer_norm.{w}'] = state_dict[f'lm_head.layer_norm.{w}'] print(f'N layers selected for distillation: {std_idx}') print(f'Number of params transfered for distillation: {len(compressed_sd.keys())}') print(f'Save transfered checkpoint to {args.dump_checkpoint}.') torch.save(compressed_sd, args.dump_checkpoint)