Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" PyTorch XLM model. | |
""" | |
from __future__ import absolute_import, division, print_function, unicode_literals | |
import logging | |
import math | |
import itertools | |
import numpy as np | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from torch.nn import CrossEntropyLoss, MSELoss | |
from .modeling_utils import PreTrainedModel, prune_linear_layer, SequenceSummary, SQuADHead | |
from .configuration_xlm import XLMConfig | |
from .file_utils import add_start_docstrings | |
logger = logging.getLogger(__name__) | |
XLM_PRETRAINED_MODEL_ARCHIVE_MAP = { | |
'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-pytorch_model.bin", | |
'xlm-mlm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-ende-1024-pytorch_model.bin", | |
'xlm-mlm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enfr-1024-pytorch_model.bin", | |
'xlm-mlm-enro-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enro-1024-pytorch_model.bin", | |
'xlm-mlm-tlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-tlm-xnli15-1024-pytorch_model.bin", | |
'xlm-mlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-xnli15-1024-pytorch_model.bin", | |
'xlm-clm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-enfr-1024-pytorch_model.bin", | |
'xlm-clm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-ende-1024-pytorch_model.bin", | |
'xlm-mlm-17-1280': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-17-1280-pytorch_model.bin", | |
'xlm-mlm-100-1280': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-100-1280-pytorch_model.bin", | |
} | |
def create_sinusoidal_embeddings(n_pos, dim, out): | |
position_enc = np.array([ | |
[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] | |
for pos in range(n_pos) | |
]) | |
out[:, 0::2] = torch.FloatTensor(np.sin(position_enc[:, 0::2])) | |
out[:, 1::2] = torch.FloatTensor(np.cos(position_enc[:, 1::2])) | |
out.detach_() | |
out.requires_grad = False | |
def gelu(x): | |
""" | |
GELU activation | |
https://arxiv.org/abs/1606.08415 | |
https://github.com/huggingface/pytorch-openai-transformer-lm/blob/master/model_pytorch.py#L14 | |
https://github.com/huggingface/pytorch-transformers/blob/master/modeling.py | |
""" | |
# return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) | |
return 0.5 * x * (1.0 + torch.erf(x / math.sqrt(2.0))) | |
def get_masks(slen, lengths, causal, padding_mask=None): | |
""" | |
Generate hidden states mask, and optionally an attention mask. | |
""" | |
bs = lengths.size(0) | |
if padding_mask is not None: | |
mask = padding_mask | |
else: | |
assert lengths.max().item() <= slen | |
alen = torch.arange(slen, dtype=torch.long, device=lengths.device) | |
mask = alen < lengths[:, None] | |
# attention mask is the same as mask, or triangular inferior attention (causal) | |
if causal: | |
attn_mask = alen[None, None, :].repeat(bs, slen, 1) <= alen[None, :, None] | |
else: | |
attn_mask = mask | |
# sanity check | |
assert mask.size() == (bs, slen) | |
assert causal is False or attn_mask.size() == (bs, slen, slen) | |
return mask, attn_mask | |
class MultiHeadAttention(nn.Module): | |
NEW_ID = itertools.count() | |
def __init__(self, n_heads, dim, config): | |
super(MultiHeadAttention, self).__init__() | |
self.layer_id = next(MultiHeadAttention.NEW_ID) | |
self.output_attentions = config.output_attentions | |
self.dim = dim | |
self.n_heads = n_heads | |
self.dropout = config.attention_dropout | |
assert self.dim % self.n_heads == 0 | |
self.q_lin = nn.Linear(dim, dim) | |
self.k_lin = nn.Linear(dim, dim) | |
self.v_lin = nn.Linear(dim, dim) | |
self.out_lin = nn.Linear(dim, dim) | |
self.pruned_heads = set() | |
def prune_heads(self, heads): | |
attention_head_size = self.dim // self.n_heads | |
if len(heads) == 0: | |
return | |
mask = torch.ones(self.n_heads, attention_head_size) | |
heads = set(heads) - self.pruned_heads | |
for head in heads: | |
head -= sum(1 if h < head else 0 for h in self.pruned_heads) | |
mask[head] = 0 | |
mask = mask.view(-1).contiguous().eq(1) | |
index = torch.arange(len(mask))[mask].long() | |
# Prune linear layers | |
self.q_lin = prune_linear_layer(self.q_lin, index) | |
self.k_lin = prune_linear_layer(self.k_lin, index) | |
self.v_lin = prune_linear_layer(self.v_lin, index) | |
self.out_lin = prune_linear_layer(self.out_lin, index, dim=1) | |
# Update hyper params | |
self.n_heads = self.n_heads - len(heads) | |
self.dim = attention_head_size * self.n_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def forward(self, input, mask, kv=None, cache=None, head_mask=None): | |
""" | |
Self-attention (if kv is None) or attention over source sentence (provided by kv). | |
""" | |
# Input is (bs, qlen, dim) | |
# Mask is (bs, klen) (non-causal) or (bs, klen, klen) | |
bs, qlen, dim = input.size() | |
if kv is None: | |
klen = qlen if cache is None else cache['slen'] + qlen | |
else: | |
klen = kv.size(1) | |
# assert dim == self.dim, 'Dimensions do not match: %s input vs %s configured' % (dim, self.dim) | |
n_heads = self.n_heads | |
dim_per_head = self.dim // n_heads | |
mask_reshape = (bs, 1, qlen, klen) if mask.dim() == 3 else (bs, 1, 1, klen) | |
def shape(x): | |
""" projection """ | |
return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2) | |
def unshape(x): | |
""" compute context """ | |
return x.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * dim_per_head) | |
q = shape(self.q_lin(input)) # (bs, n_heads, qlen, dim_per_head) | |
if kv is None: | |
k = shape(self.k_lin(input)) # (bs, n_heads, qlen, dim_per_head) | |
v = shape(self.v_lin(input)) # (bs, n_heads, qlen, dim_per_head) | |
elif cache is None or self.layer_id not in cache: | |
k = v = kv | |
k = shape(self.k_lin(k)) # (bs, n_heads, qlen, dim_per_head) | |
v = shape(self.v_lin(v)) # (bs, n_heads, qlen, dim_per_head) | |
if cache is not None: | |
if self.layer_id in cache: | |
if kv is None: | |
k_, v_ = cache[self.layer_id] | |
k = torch.cat([k_, k], dim=2) # (bs, n_heads, klen, dim_per_head) | |
v = torch.cat([v_, v], dim=2) # (bs, n_heads, klen, dim_per_head) | |
else: | |
k, v = cache[self.layer_id] | |
cache[self.layer_id] = (k, v) | |
q = q / math.sqrt(dim_per_head) # (bs, n_heads, qlen, dim_per_head) | |
scores = torch.matmul(q, k.transpose(2, 3)) # (bs, n_heads, qlen, klen) | |
mask = (mask == 0).view(mask_reshape).expand_as(scores) # (bs, n_heads, qlen, klen) | |
scores.masked_fill_(mask, -float('inf')) # (bs, n_heads, qlen, klen) | |
weights = F.softmax(scores.float(), dim=-1).type_as(scores) # (bs, n_heads, qlen, klen) | |
weights = F.dropout(weights, p=self.dropout, training=self.training) # (bs, n_heads, qlen, klen) | |
# Mask heads if we want to | |
if head_mask is not None: | |
weights = weights * head_mask | |
context = torch.matmul(weights, v) # (bs, n_heads, qlen, dim_per_head) | |
context = unshape(context) # (bs, qlen, dim) | |
outputs = (self.out_lin(context),) | |
if self.output_attentions: | |
outputs = outputs + (weights,) | |
return outputs | |
class TransformerFFN(nn.Module): | |
def __init__(self, in_dim, dim_hidden, out_dim, config): | |
super(TransformerFFN, self).__init__() | |
self.dropout = config.dropout | |
self.lin1 = nn.Linear(in_dim, dim_hidden) | |
self.lin2 = nn.Linear(dim_hidden, out_dim) | |
self.act = gelu if config.gelu_activation else F.relu | |
def forward(self, input): | |
x = self.lin1(input) | |
x = self.act(x) | |
x = self.lin2(x) | |
x = F.dropout(x, p=self.dropout, training=self.training) | |
return x | |
class XLMPreTrainedModel(PreTrainedModel): | |
""" An abstract class to handle weights initialization and | |
a simple interface for dowloading and loading pretrained models. | |
""" | |
config_class = XLMConfig | |
pretrained_model_archive_map = XLM_PRETRAINED_MODEL_ARCHIVE_MAP | |
load_tf_weights = None | |
base_model_prefix = "transformer" | |
def __init__(self, *inputs, **kwargs): | |
super(XLMPreTrainedModel, self).__init__(*inputs, **kwargs) | |
def _init_weights(self, module): | |
""" Initialize the weights. """ | |
if isinstance(module, nn.Embedding): | |
if self.config is not None and self.config.embed_init_std is not None: | |
nn.init.normal_(module.weight, mean=0, std=self.config.embed_init_std) | |
if isinstance(module, nn.Linear): | |
if self.config is not None and self.config.init_std is not None: | |
nn.init.normal_(module.weight, mean=0, std=self.config.init_std) | |
if hasattr(module, 'bias') and module.bias is not None: | |
nn.init.constant_(module.bias, 0.) | |
if isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
XLM_START_DOCSTRING = r""" The XLM model was proposed in | |
`Cross-lingual Language Model Pretraining`_ | |
by Guillaume Lample*, Alexis Conneau*. It's a transformer pre-trained using one of the following objectives: | |
- a causal language modeling (CLM) objective (next token prediction), | |
- a masked language modeling (MLM) objective (Bert-like), or | |
- a Translation Language Modeling (TLM) object (extension of Bert's MLM to multiple language inputs) | |
Original code can be found `here`_. | |
This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and | |
refer to the PyTorch documentation for all matter related to general usage and behavior. | |
.. _`Cross-lingual Language Model Pretraining`: | |
https://arxiv.org/abs/1901.07291 | |
.. _`torch.nn.Module`: | |
https://pytorch.org/docs/stable/nn.html#module | |
.. _`here`: | |
https://github.com/facebookresearch/XLM | |
Parameters: | |
config (:class:`~pytorch_transformers.XLMConfig`): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the configuration. | |
Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights. | |
""" | |
XLM_INPUTS_DOCSTRING = r""" | |
Inputs: | |
**input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: | |
Indices of input sequence tokens in the vocabulary. | |
XLM is a model with absolute position embeddings so it's usually advised to pad the inputs on | |
the right rather than the left. | |
Indices can be obtained using :class:`pytorch_transformers.XLMTokenizer`. | |
See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and | |
:func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details. | |
**attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``: | |
Mask to avoid performing attention on padding token indices. | |
Mask values selected in ``[0, 1]``: | |
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. | |
**langs**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: | |
A parallel sequence of tokens to be used to indicate the language of each token in the input. | |
Indices are languages ids which can be obtained from the language names by using two conversion mappings | |
provided in the configuration of the model (only provided for multilingual models). | |
More precisely, the `language name -> language id` mapping is in `model.config.lang2id` (dict str -> int) and | |
the `language id -> language name` mapping is `model.config.id2lang` (dict int -> str). | |
**token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: | |
A parallel sequence of tokens (can be used to indicate various portions of the inputs). | |
The embeddings from these tokens will be summed with the respective token embeddings. | |
Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices). | |
**position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: | |
Indices of positions of each input sequence tokens in the position embeddings. | |
Selected in the range ``[0, config.max_position_embeddings - 1]``. | |
**lengths**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: | |
Length of each sentence that can be used to avoid performing attention on padding token indices. | |
You can also use `attention_mask` for the same result (see above), kept here for compatbility. | |
Indices selected in ``[0, ..., input_ids.size(-1)]``: | |
**cache**: | |
dictionary with ``torch.FloatTensor`` that contains pre-computed | |
hidden-states (key and values in the attention blocks) as computed by the model | |
(see `cache` output below). Can be used to speed up sequential decoding. | |
The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states. | |
**head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``: | |
Mask to nullify selected heads of the self-attention modules. | |
Mask values selected in ``[0, 1]``: | |
``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**. | |
""" | |
class XLMModel(XLMPreTrainedModel): | |
r""" | |
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
**last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)`` | |
Sequence of hidden-states at the last layer of the model. | |
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
of shape ``(batch_size, sequence_length, hidden_size)``: | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
**attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
Examples:: | |
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048') | |
model = XLMModel.from_pretrained('xlm-mlm-en-2048') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids) | |
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple | |
""" | |
ATTRIBUTES = ['encoder', 'eos_index', 'pad_index', # 'with_output', | |
'n_langs', 'use_lang_emb', 'n_words', 'dim', 'n_layers', 'n_heads', | |
'hidden_dim', 'dropout', 'attention_dropout', 'asm', | |
'asm_cutoffs', 'asm_div_value'] | |
def __init__(self, config): #, dico, is_encoder, with_output): | |
super(XLMModel, self).__init__(config) | |
self.output_attentions = config.output_attentions | |
self.output_hidden_states = config.output_hidden_states | |
# encoder / decoder, output layer | |
self.is_encoder = config.is_encoder | |
self.is_decoder = not config.is_encoder | |
if self.is_decoder: | |
raise NotImplementedError("Currently XLM can only be used as an encoder") | |
# self.with_output = with_output | |
self.causal = config.causal | |
# dictionary / languages | |
self.n_langs = config.n_langs | |
self.use_lang_emb = config.use_lang_emb | |
self.n_words = config.n_words | |
self.eos_index = config.eos_index | |
self.pad_index = config.pad_index | |
# self.dico = dico | |
# self.id2lang = config.id2lang | |
# self.lang2id = config.lang2id | |
# assert len(self.dico) == self.n_words | |
# assert len(self.id2lang) == len(self.lang2id) == self.n_langs | |
# model parameters | |
self.dim = config.emb_dim # 512 by default | |
self.hidden_dim = self.dim * 4 # 2048 by default | |
self.n_heads = config.n_heads # 8 by default | |
self.n_layers = config.n_layers | |
self.dropout = config.dropout | |
self.attention_dropout = config.attention_dropout | |
assert self.dim % self.n_heads == 0, 'transformer dim must be a multiple of n_heads' | |
# embeddings | |
self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.dim) | |
if config.sinusoidal_embeddings: | |
create_sinusoidal_embeddings(config.max_position_embeddings, self.dim, out=self.position_embeddings.weight) | |
if config.n_langs > 1 and config.use_lang_emb: | |
self.lang_embeddings = nn.Embedding(self.n_langs, self.dim) | |
self.embeddings = nn.Embedding(self.n_words, self.dim, padding_idx=self.pad_index) | |
self.layer_norm_emb = nn.LayerNorm(self.dim, eps=config.layer_norm_eps) | |
# transformer layers | |
self.attentions = nn.ModuleList() | |
self.layer_norm1 = nn.ModuleList() | |
self.ffns = nn.ModuleList() | |
self.layer_norm2 = nn.ModuleList() | |
# if self.is_decoder: | |
# self.layer_norm15 = nn.ModuleList() | |
# self.encoder_attn = nn.ModuleList() | |
for _ in range(self.n_layers): | |
self.attentions.append(MultiHeadAttention(self.n_heads, self.dim, config=config)) | |
self.layer_norm1.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps)) | |
# if self.is_decoder: | |
# self.layer_norm15.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps)) | |
# self.encoder_attn.append(MultiHeadAttention(self.n_heads, self.dim, dropout=self.attention_dropout)) | |
self.ffns.append(TransformerFFN(self.dim, self.hidden_dim, self.dim, config=config)) | |
self.layer_norm2.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps)) | |
if hasattr(config, "pruned_heads"): | |
pruned_heads = config.pruned_heads.copy().items() | |
config.pruned_heads = {} | |
for layer, heads in pruned_heads: | |
if self.attentions[int(layer)].n_heads == config.n_heads: | |
self.prune_heads({int(layer): list(map(int, heads))}) | |
self.init_weights() | |
def _resize_token_embeddings(self, new_num_tokens): | |
self.embeddings = self._get_resized_embeddings(self.embeddings, new_num_tokens) | |
return self.embeddings | |
def _prune_heads(self, heads_to_prune): | |
""" Prunes heads of the model. | |
heads_to_prune: dict of {layer_num: list of heads to prune in this layer} | |
See base class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.attentions[layer].prune_heads(heads) | |
def forward(self, input_ids, attention_mask=None, langs=None, token_type_ids=None, position_ids=None, | |
lengths=None, cache=None, head_mask=None): # removed: src_enc=None, src_len=None | |
if lengths is None: | |
lengths = (input_ids != self.pad_index).sum(dim=1).long() | |
# mask = input_ids != self.pad_index | |
# check inputs | |
bs, slen = input_ids.size() | |
assert lengths.size(0) == bs | |
assert lengths.max().item() <= slen | |
# input_ids = input_ids.transpose(0, 1) # batch size as dimension 0 | |
# assert (src_enc is None) == (src_len is None) | |
# if src_enc is not None: | |
# assert self.is_decoder | |
# assert src_enc.size(0) == bs | |
# generate masks | |
mask, attn_mask = get_masks(slen, lengths, self.causal, padding_mask=attention_mask) | |
# if self.is_decoder and src_enc is not None: | |
# src_mask = torch.arange(src_len.max(), dtype=torch.long, device=lengths.device) < src_len[:, None] | |
# position_ids | |
if position_ids is None: | |
position_ids = input_ids.new((slen,)).long() | |
position_ids = torch.arange(slen, out=position_ids).unsqueeze(0) | |
else: | |
assert position_ids.size() == (bs, slen) # (slen, bs) | |
# position_ids = position_ids.transpose(0, 1) | |
# langs | |
if langs is not None: | |
assert langs.size() == (bs, slen) # (slen, bs) | |
# langs = langs.transpose(0, 1) | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x qlen x klen] | |
if head_mask is not None: | |
if head_mask.dim() == 1: | |
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) | |
head_mask = head_mask.expand(self.n_layers, -1, -1, -1, -1) | |
elif head_mask.dim() == 2: | |
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer | |
head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility | |
else: | |
head_mask = [None] * self.n_layers | |
# do not recompute cached elements | |
if cache is not None: | |
_slen = slen - cache['slen'] | |
input_ids = input_ids[:, -_slen:] | |
position_ids = position_ids[:, -_slen:] | |
if langs is not None: | |
langs = langs[:, -_slen:] | |
mask = mask[:, -_slen:] | |
attn_mask = attn_mask[:, -_slen:] | |
# embeddings | |
tensor = self.embeddings(input_ids) | |
tensor = tensor + self.position_embeddings(position_ids).expand_as(tensor) | |
if langs is not None and self.use_lang_emb: | |
tensor = tensor + self.lang_embeddings(langs) | |
if token_type_ids is not None: | |
tensor = tensor + self.embeddings(token_type_ids) | |
tensor = self.layer_norm_emb(tensor) | |
tensor = F.dropout(tensor, p=self.dropout, training=self.training) | |
tensor *= mask.unsqueeze(-1).to(tensor.dtype) | |
# transformer layers | |
hidden_states = () | |
attentions = () | |
for i in range(self.n_layers): | |
if self.output_hidden_states: | |
hidden_states = hidden_states + (tensor,) | |
# self attention | |
attn_outputs = self.attentions[i](tensor, attn_mask, cache=cache, head_mask=head_mask[i]) | |
attn = attn_outputs[0] | |
if self.output_attentions: | |
attentions = attentions + (attn_outputs[1],) | |
attn = F.dropout(attn, p=self.dropout, training=self.training) | |
tensor = tensor + attn | |
tensor = self.layer_norm1[i](tensor) | |
# encoder attention (for decoder only) | |
# if self.is_decoder and src_enc is not None: | |
# attn = self.encoder_attn[i](tensor, src_mask, kv=src_enc, cache=cache) | |
# attn = F.dropout(attn, p=self.dropout, training=self.training) | |
# tensor = tensor + attn | |
# tensor = self.layer_norm15[i](tensor) | |
# FFN | |
tensor = tensor + self.ffns[i](tensor) | |
tensor = self.layer_norm2[i](tensor) | |
tensor *= mask.unsqueeze(-1).to(tensor.dtype) | |
# Add last hidden state | |
if self.output_hidden_states: | |
hidden_states = hidden_states + (tensor,) | |
# update cache length | |
if cache is not None: | |
cache['slen'] += tensor.size(1) | |
# move back sequence length to dimension 0 | |
# tensor = tensor.transpose(0, 1) | |
outputs = (tensor,) | |
if self.output_hidden_states: | |
outputs = outputs + (hidden_states,) | |
if self.output_attentions: | |
outputs = outputs + (attentions,) | |
return outputs # outputs, (hidden_states), (attentions) | |
class XLMPredLayer(nn.Module): | |
""" | |
Prediction layer (cross_entropy or adaptive_softmax). | |
""" | |
def __init__(self, config): | |
super(XLMPredLayer, self).__init__() | |
self.asm = config.asm | |
self.n_words = config.n_words | |
self.pad_index = config.pad_index | |
dim = config.emb_dim | |
if config.asm is False: | |
self.proj = nn.Linear(dim, config.n_words, bias=True) | |
else: | |
self.proj = nn.AdaptiveLogSoftmaxWithLoss( | |
in_features=dim, | |
n_classes=config.n_words, | |
cutoffs=config.asm_cutoffs, | |
div_value=config.asm_div_value, | |
head_bias=True, # default is False | |
) | |
def forward(self, x, y=None): | |
""" Compute the loss, and optionally the scores. | |
""" | |
outputs = () | |
if self.asm is False: | |
scores = self.proj(x).view(-1, self.n_words) | |
outputs = (scores,) + outputs | |
if y is not None: | |
loss = F.cross_entropy(scores, y, reduction='elementwise_mean') | |
outputs = (loss,) + outputs | |
else: | |
scores = self.proj.log_prob(x) | |
outputs = (scores,) + outputs | |
if y is not None: | |
_, loss = self.proj(x, y) | |
outputs = (loss,) + outputs | |
return outputs | |
class XLMWithLMHeadModel(XLMPreTrainedModel): | |
r""" | |
**labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: | |
Labels for language modeling. | |
Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids`` | |
Indices are selected in ``[-1, 0, ..., config.vocab_size]`` | |
All labels set to ``-1`` are ignored (masked), the loss is only | |
computed for labels in ``[0, ..., config.vocab_size]`` | |
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
Language modeling loss. | |
**prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)`` | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
of shape ``(batch_size, sequence_length, hidden_size)``: | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
**attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
Examples:: | |
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048') | |
model = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids) | |
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple | |
""" | |
def __init__(self, config): | |
super(XLMWithLMHeadModel, self).__init__(config) | |
self.transformer = XLMModel(config) | |
self.pred_layer = XLMPredLayer(config) | |
self.init_weights() | |
self.tie_weights() | |
def tie_weights(self): | |
""" Make sure we are sharing the embeddings | |
""" | |
self._tie_or_clone_weights(self.pred_layer.proj, self.transformer.embeddings) | |
def forward(self, input_ids, attention_mask=None, langs=None, token_type_ids=None, position_ids=None, | |
lengths=None, cache=None, head_mask=None, labels=None): | |
transformer_outputs = self.transformer(input_ids, | |
attention_mask=attention_mask, | |
langs=langs, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
lengths=lengths, | |
cache=cache, | |
head_mask=head_mask) | |
output = transformer_outputs[0] | |
outputs = self.pred_layer(output, labels) | |
outputs = outputs + transformer_outputs[1:] # Keep new_mems and attention/hidden states if they are here | |
return outputs | |
class XLMForSequenceClassification(XLMPreTrainedModel): | |
r""" | |
**labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: | |
Labels for computing the sequence classification/regression loss. | |
Indices should be in ``[0, ..., config.num_labels - 1]``. | |
If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss), | |
If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy). | |
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
Classification (or regression if config.num_labels==1) loss. | |
**logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)`` | |
Classification (or regression if config.num_labels==1) scores (before SoftMax). | |
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
of shape ``(batch_size, sequence_length, hidden_size)``: | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
**attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
Examples:: | |
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048') | |
model = XLMForSequenceClassification.from_pretrained('xlm-mlm-en-2048') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 | |
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids, labels=labels) | |
loss, logits = outputs[:2] | |
""" | |
def __init__(self, config): | |
super(XLMForSequenceClassification, self).__init__(config) | |
self.num_labels = config.num_labels | |
self.transformer = XLMModel(config) | |
self.sequence_summary = SequenceSummary(config) | |
self.init_weights() | |
def forward(self, input_ids, attention_mask=None, langs=None, token_type_ids=None, position_ids=None, | |
lengths=None, cache=None, head_mask=None, labels=None): | |
transformer_outputs = self.transformer(input_ids, | |
attention_mask=attention_mask, | |
langs=langs, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
lengths=lengths, | |
cache=cache, | |
head_mask=head_mask) | |
output = transformer_outputs[0] | |
logits = self.sequence_summary(output) | |
outputs = (logits,) + transformer_outputs[1:] # Keep new_mems and attention/hidden states if they are here | |
if labels is not None: | |
if self.num_labels == 1: | |
# We are doing regression | |
loss_fct = MSELoss() | |
loss = loss_fct(logits.view(-1), labels.view(-1)) | |
else: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
outputs = (loss,) + outputs | |
return outputs | |
class XLMForQuestionAnswering(XLMPreTrainedModel): | |
r""" | |
**start_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: | |
Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). | |
Position outside of the sequence are not taken into account for computing the loss. | |
**end_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: | |
Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). | |
Position outside of the sequence are not taken into account for computing the loss. | |
**is_impossible**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: | |
Labels whether a question has an answer or no answer (SQuAD 2.0) | |
**cls_index**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: | |
Labels for position (index) of the classification token to use as input for computing plausibility of the answer. | |
**p_mask**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: | |
Optional mask of tokens which can't be in answers (e.g. [CLS], [PAD], ...) | |
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. | |
**start_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)`` | |
Span-start scores (before SoftMax). | |
**end_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)`` | |
Span-end scores (before SoftMax). | |
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
of shape ``(batch_size, sequence_length, hidden_size)``: | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
**attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
Examples:: | |
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048') | |
model = XLMForQuestionAnswering.from_pretrained('xlm-mlm-en-2048') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 | |
start_positions = torch.tensor([1]) | |
end_positions = torch.tensor([3]) | |
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions) | |
loss, start_scores, end_scores = outputs[:2] | |
""" | |
def __init__(self, config): | |
super(XLMForQuestionAnswering, self).__init__(config) | |
self.transformer = XLMModel(config) | |
self.qa_outputs = SQuADHead(config) | |
self.init_weights() | |
def forward(self, input_ids, attention_mask=None, langs=None, token_type_ids=None, position_ids=None, | |
lengths=None, cache=None, head_mask=None, start_positions=None, end_positions=None, | |
is_impossible=None, cls_index=None, p_mask=None): | |
transformer_outputs = self.transformer(input_ids, | |
attention_mask=attention_mask, | |
langs=langs, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
lengths=lengths, | |
cache=cache, | |
head_mask=head_mask) | |
output = transformer_outputs[0] | |
outputs = self.qa_outputs(output, start_positions=start_positions, end_positions=end_positions, | |
cls_index=cls_index, is_impossible=is_impossible, p_mask=p_mask) | |
outputs = outputs + transformer_outputs[1:] # Keep new_mems and attention/hidden states if they are here | |
return outputs | |