Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Tokenization classes for XLNet model.""" | |
from __future__ import (absolute_import, division, print_function, | |
unicode_literals) | |
import logging | |
import os | |
from shutil import copyfile | |
import unicodedata | |
import six | |
from .tokenization_utils import PreTrainedTokenizer | |
logger = logging.getLogger(__name__) | |
VOCAB_FILES_NAMES = {'vocab_file': 'spiece.model'} | |
PRETRAINED_VOCAB_FILES_MAP = { | |
'vocab_file': | |
{ | |
'xlnet-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-base-cased-spiece.model", | |
'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-spiece.model", | |
} | |
} | |
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { | |
'xlnet-base-cased': None, | |
'xlnet-large-cased': None, | |
} | |
SPIECE_UNDERLINE = u'▁' | |
# Segments (not really needed) | |
SEG_ID_A = 0 | |
SEG_ID_B = 1 | |
SEG_ID_CLS = 2 | |
SEG_ID_SEP = 3 | |
SEG_ID_PAD = 4 | |
class XLNetTokenizer(PreTrainedTokenizer): | |
""" | |
SentencePiece based tokenizer. Peculiarities: | |
- requires `SentencePiece <https://github.com/google/sentencepiece>`_ | |
""" | |
vocab_files_names = VOCAB_FILES_NAMES | |
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP | |
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES | |
def __init__(self, vocab_file, | |
do_lower_case=False, remove_space=True, keep_accents=False, | |
bos_token="<s>", eos_token="</s>", unk_token="<unk>", sep_token="<sep>", | |
pad_token="<pad>", cls_token="<cls>", mask_token="<mask>", | |
additional_special_tokens=["<eop>", "<eod>"], **kwargs): | |
super(XLNetTokenizer, self).__init__(bos_token=bos_token, eos_token=eos_token, | |
unk_token=unk_token, sep_token=sep_token, | |
pad_token=pad_token, cls_token=cls_token, | |
mask_token=mask_token, additional_special_tokens= | |
additional_special_tokens, **kwargs) | |
self.max_len_single_sentence = self.max_len - 2 # take into account special tokens | |
self.max_len_sentences_pair = self.max_len - 3 # take into account special tokens | |
try: | |
import sentencepiece as spm | |
except ImportError: | |
logger.warning("You need to install SentencePiece to use XLNetTokenizer: https://github.com/google/sentencepiece" | |
"pip install sentencepiece") | |
self.do_lower_case = do_lower_case | |
self.remove_space = remove_space | |
self.keep_accents = keep_accents | |
self.vocab_file = vocab_file | |
self.sp_model = spm.SentencePieceProcessor() | |
self.sp_model.Load(vocab_file) | |
def vocab_size(self): | |
return len(self.sp_model) | |
def __getstate__(self): | |
state = self.__dict__.copy() | |
state["sp_model"] = None | |
return state | |
def __setstate__(self, d): | |
self.__dict__ = d | |
try: | |
import sentencepiece as spm | |
except ImportError: | |
logger.warning("You need to install SentencePiece to use XLNetTokenizer: https://github.com/google/sentencepiece" | |
"pip install sentencepiece") | |
self.sp_model = spm.SentencePieceProcessor() | |
self.sp_model.Load(self.vocab_file) | |
def preprocess_text(self, inputs): | |
if self.remove_space: | |
outputs = ' '.join(inputs.strip().split()) | |
else: | |
outputs = inputs | |
outputs = outputs.replace("``", '"').replace("''", '"') | |
if six.PY2 and isinstance(outputs, str): | |
outputs = outputs.decode('utf-8') | |
if not self.keep_accents: | |
outputs = unicodedata.normalize('NFKD', outputs) | |
outputs = ''.join([c for c in outputs if not unicodedata.combining(c)]) | |
if self.do_lower_case: | |
outputs = outputs.lower() | |
return outputs | |
def _tokenize(self, text, return_unicode=True, sample=False): | |
""" Tokenize a string. | |
return_unicode is used only for py2 | |
""" | |
text = self.preprocess_text(text) | |
# note(zhiliny): in some systems, sentencepiece only accepts str for py2 | |
if six.PY2 and isinstance(text, unicode): | |
text = text.encode('utf-8') | |
if not sample: | |
pieces = self.sp_model.EncodeAsPieces(text) | |
else: | |
pieces = self.sp_model.SampleEncodeAsPieces(text, 64, 0.1) | |
new_pieces = [] | |
for piece in pieces: | |
if len(piece) > 1 and piece[-1] == ',' and piece[-2].isdigit(): | |
cur_pieces = self.sp_model.EncodeAsPieces( | |
piece[:-1].replace(SPIECE_UNDERLINE, '')) | |
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: | |
if len(cur_pieces[0]) == 1: | |
cur_pieces = cur_pieces[1:] | |
else: | |
cur_pieces[0] = cur_pieces[0][1:] | |
cur_pieces.append(piece[-1]) | |
new_pieces.extend(cur_pieces) | |
else: | |
new_pieces.append(piece) | |
# note(zhiliny): convert back to unicode for py2 | |
if six.PY2 and return_unicode: | |
ret_pieces = [] | |
for piece in new_pieces: | |
if isinstance(piece, str): | |
piece = piece.decode('utf-8') | |
ret_pieces.append(piece) | |
new_pieces = ret_pieces | |
return new_pieces | |
def _convert_token_to_id(self, token): | |
""" Converts a token (str/unicode) in an id using the vocab. """ | |
return self.sp_model.PieceToId(token) | |
def _convert_id_to_token(self, index, return_unicode=True): | |
"""Converts an index (integer) in a token (string/unicode) using the vocab.""" | |
token = self.sp_model.IdToPiece(index) | |
if six.PY2 and return_unicode and isinstance(token, str): | |
token = token.decode('utf-8') | |
return token | |
def convert_tokens_to_string(self, tokens): | |
"""Converts a sequence of tokens (strings for sub-words) in a single string.""" | |
out_string = ''.join(tokens).replace(SPIECE_UNDERLINE, ' ').strip() | |
return out_string | |
def add_special_tokens_single_sentence(self, token_ids): | |
""" | |
Adds special tokens to a sequence pair for sequence classification tasks. | |
An XLNet sequence pair has the following format: A [SEP] B [SEP][CLS] | |
""" | |
sep = [self.sep_token_id] | |
cls = [self.cls_token_id] | |
return token_ids + sep + cls | |
def add_special_tokens_sentences_pair(self, token_ids_0, token_ids_1): | |
""" | |
Adds special tokens to a sequence for sequence classification tasks. | |
An XLNet sequence has the following format: X [SEP][CLS] | |
""" | |
sep = [self.sep_token_id] | |
cls = [self.cls_token_id] | |
return token_ids_0 + sep + token_ids_1 + sep + cls | |
def save_vocabulary(self, save_directory): | |
""" Save the sentencepiece vocabulary (copy original file) and special tokens file | |
to a directory. | |
""" | |
if not os.path.isdir(save_directory): | |
logger.error("Vocabulary path ({}) should be a directory".format(save_directory)) | |
return | |
out_vocab_file = os.path.join(save_directory, VOCAB_FILES_NAMES['vocab_file']) | |
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): | |
copyfile(self.vocab_file, out_vocab_file) | |
return (out_vocab_file,) | |