Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Tokenization classes for Transformer XL model. | |
Adapted from https://github.com/kimiyoung/transformer-xl. | |
""" | |
from __future__ import (absolute_import, division, print_function, | |
unicode_literals) | |
import glob | |
import logging | |
import os | |
import sys | |
from collections import Counter, OrderedDict | |
from io import open | |
import torch | |
import numpy as np | |
from .file_utils import cached_path | |
from .tokenization_utils import PreTrainedTokenizer | |
if sys.version_info[0] == 2: | |
import cPickle as pickle | |
else: | |
import pickle | |
logger = logging.getLogger(__name__) | |
VOCAB_FILES_NAMES = {'pretrained_vocab_file': 'vocab.bin', 'vocab_file': 'vocab.txt'} | |
PRETRAINED_VOCAB_FILES_MAP = { | |
'pretrained_vocab_file': | |
{ | |
'transfo-xl-wt103': "https://s3.amazonaws.com/models.huggingface.co/bert/transfo-xl-wt103-vocab.bin", | |
} | |
} | |
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { | |
'transfo-xl-wt103': None, | |
} | |
PRETRAINED_CORPUS_ARCHIVE_MAP = { | |
'transfo-xl-wt103': "https://s3.amazonaws.com/models.huggingface.co/bert/transfo-xl-wt103-corpus.bin", | |
} | |
CORPUS_NAME = 'corpus.bin' | |
class TransfoXLTokenizer(PreTrainedTokenizer): | |
""" | |
Transformer-XL tokenizer adapted from Vocab class in https://github.com/kimiyoung/transformer-xl | |
""" | |
vocab_files_names = VOCAB_FILES_NAMES | |
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP | |
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES | |
def __init__(self, special=None, min_freq=0, max_size=None, lower_case=False, | |
delimiter=None, vocab_file=None, pretrained_vocab_file=None, | |
never_split=None, unk_token="<unk>", eos_token="<eos>", | |
additional_special_tokens=["<formula>"], **kwargs): | |
super(TransfoXLTokenizer, self).__init__(unk_token=unk_token, eos_token=eos_token, | |
additional_special_tokens=additional_special_tokens, | |
**kwargs) | |
self.max_len_single_sentence = self.max_len # no default special tokens - you can update this value if you add special tokens | |
self.max_len_sentences_pair = self.max_len # no default special tokens - you can update this value if you add special tokens | |
if never_split is None: | |
never_split = self.all_special_tokens | |
if special is None: | |
special = [] | |
self.counter = Counter() | |
self.special = special | |
self.min_freq = min_freq | |
self.max_size = max_size | |
self.lower_case = lower_case | |
self.delimiter = delimiter | |
self.vocab_file = vocab_file | |
self.never_split = never_split | |
if pretrained_vocab_file is not None: | |
# Hack because, honestly this tokenizer was not made to be used | |
# in a library like ours, at all. | |
vocab_dict = torch.load(pretrained_vocab_file) | |
for key, value in vocab_dict.items(): | |
if key not in self.__dict__: | |
self.__dict__[key] = value | |
if vocab_file is not None: | |
self.build_vocab() | |
def count_file(self, path, verbose=False, add_eos=False): | |
if verbose: logger.info('counting file {} ...'.format(path)) | |
assert os.path.exists(path) | |
sents = [] | |
with open(path, 'r', encoding='utf-8') as f: | |
for idx, line in enumerate(f): | |
if verbose and idx > 0 and idx % 500000 == 0: | |
logger.info(' line {}'.format(idx)) | |
symbols = self.tokenize(line, add_eos=add_eos) | |
self.counter.update(symbols) | |
sents.append(symbols) | |
return sents | |
def count_sents(self, sents, verbose=False): | |
""" | |
sents : a list of sentences, each a list of tokenized symbols | |
""" | |
if verbose: logger.info('counting {} sents ...'.format(len(sents))) | |
for idx, symbols in enumerate(sents): | |
if verbose and idx > 0 and idx % 500000 == 0: | |
logger.info(' line {}'.format(idx)) | |
self.counter.update(symbols) | |
def _build_from_file(self, vocab_file): | |
self.idx2sym = [] | |
self.sym2idx = OrderedDict() | |
with open(vocab_file, 'r', encoding='utf-8') as f: | |
for line in f: | |
symb = line.strip().split()[0] | |
self.add_symbol(symb) | |
if '<UNK>' in self.sym2idx: | |
self.unk_idx = self.sym2idx['<UNK>'] | |
elif '<unk>' in self.sym2idx: | |
self.unk_idx = self.sym2idx['<unk>'] | |
else: | |
raise ValueError('No <unkown> token in vocabulary') | |
def save_vocabulary(self, vocab_path): | |
"""Save the tokenizer vocabulary to a directory or file.""" | |
if os.path.isdir(vocab_path): | |
vocab_file = os.path.join(vocab_path, VOCAB_FILES_NAMES['pretrained_vocab_file']) | |
torch.save(self.__dict__, vocab_file) | |
return (vocab_file,) | |
def build_vocab(self): | |
if self.vocab_file: | |
logger.info('building vocab from {}'.format(self.vocab_file)) | |
self._build_from_file(self.vocab_file) | |
logger.info('final vocab size {}'.format(len(self))) | |
else: | |
logger.info('building vocab with min_freq={}, max_size={}'.format( | |
self.min_freq, self.max_size)) | |
self.idx2sym = [] | |
self.sym2idx = OrderedDict() | |
for sym in self.special: | |
self.add_special(sym) | |
for sym, cnt in self.counter.most_common(self.max_size): | |
if cnt < self.min_freq: break | |
self.add_symbol(sym) | |
logger.info('final vocab size {} from {} unique tokens'.format( | |
len(self), len(self.counter))) | |
def encode_file(self, path, ordered=False, verbose=False, add_eos=True, | |
add_double_eos=False): | |
if verbose: logger.info('encoding file {} ...'.format(path)) | |
assert os.path.exists(path) | |
encoded = [] | |
with open(path, 'r', encoding='utf-8') as f: | |
for idx, line in enumerate(f): | |
if verbose and idx > 0 and idx % 500000 == 0: | |
logger.info(' line {}'.format(idx)) | |
symbols = self.tokenize(line, add_eos=add_eos, | |
add_double_eos=add_double_eos) | |
encoded.append(self.convert_to_tensor(symbols)) | |
if ordered: | |
encoded = torch.cat(encoded) | |
return encoded | |
def encode_sents(self, sents, ordered=False, verbose=False): | |
if verbose: logger.info('encoding {} sents ...'.format(len(sents))) | |
encoded = [] | |
for idx, symbols in enumerate(sents): | |
if verbose and idx > 0 and idx % 500000 == 0: | |
logger.info(' line {}'.format(idx)) | |
encoded.append(self.convert_to_tensor(symbols)) | |
if ordered: | |
encoded = torch.cat(encoded) | |
return encoded | |
def add_special(self, sym): | |
if sym not in self.sym2idx: | |
self.idx2sym.append(sym) | |
self.sym2idx[sym] = len(self.idx2sym) - 1 | |
setattr(self, '{}_idx'.format(sym.strip('<>')), self.sym2idx[sym]) | |
def add_symbol(self, sym): | |
if sym not in self.sym2idx: | |
self.idx2sym.append(sym) | |
self.sym2idx[sym] = len(self.idx2sym) - 1 | |
def _convert_id_to_token(self, idx): | |
"""Converts an id in a token (BPE) using the vocab.""" | |
assert 0 <= idx < len(self), 'Index {} out of vocabulary range'.format(idx) | |
return self.idx2sym[idx] | |
def _convert_token_to_id(self, sym): | |
""" Converts a token (str/unicode) in an id using the vocab. """ | |
if sym in self.sym2idx: | |
return self.sym2idx[sym] | |
else: | |
# logger.info('encounter unk {}'.format(sym)) | |
# assert '<eos>' not in sym | |
if hasattr(self, 'unk_idx'): | |
return self.sym2idx.get(sym, self.unk_idx) | |
# Backward compatibility with pre-trained models | |
elif '<unk>' in self.sym2idx: | |
return self.sym2idx['<unk>'] | |
elif '<UNK>' in self.sym2idx: | |
return self.sym2idx['<UNK>'] | |
else: | |
raise ValueError('Token not in vocabulary and no <unk> token in vocabulary for replacement') | |
def convert_tokens_to_string(self, tokens): | |
""" Converts a sequence of tokens (string) in a single string. """ | |
out_string = ' '.join(tokens).strip() | |
return out_string | |
def convert_to_tensor(self, symbols): | |
return torch.LongTensor(self.convert_tokens_to_ids(symbols)) | |
def vocab_size(self): | |
return len(self.idx2sym) | |
def _tokenize(self, line, add_eos=False, add_double_eos=False): | |
line = line.strip() | |
# convert to lower case | |
if self.lower_case: | |
line = line.lower() | |
# empty delimiter '' will evaluate False | |
if self.delimiter == '': | |
symbols = line | |
else: | |
symbols = line.split(self.delimiter) | |
if add_double_eos: # lm1b | |
return ['<S>'] + symbols + ['<S>'] | |
elif add_eos: | |
return symbols + ['<eos>'] | |
else: | |
return symbols | |
class LMOrderedIterator(object): | |
def __init__(self, data, bsz, bptt, device='cpu', ext_len=None): | |
""" | |
data -- LongTensor -- the LongTensor is strictly ordered | |
""" | |
self.bsz = bsz | |
self.bptt = bptt | |
self.ext_len = ext_len if ext_len is not None else 0 | |
self.device = device | |
# Work out how cleanly we can divide the dataset into bsz parts. | |
self.n_step = data.size(0) // bsz | |
# Trim off any extra elements that wouldn't cleanly fit (remainders). | |
data = data.narrow(0, 0, self.n_step * bsz) | |
# Evenly divide the data across the bsz batches. | |
self.data = data.view(bsz, -1).t().contiguous().to(device) | |
# Number of mini-batches | |
self.n_batch = (self.n_step + self.bptt - 1) // self.bptt | |
def get_batch(self, i, bptt=None): | |
if bptt is None: bptt = self.bptt | |
seq_len = min(bptt, self.data.size(0) - 1 - i) | |
end_idx = i + seq_len | |
beg_idx = max(0, i - self.ext_len) | |
data = self.data[beg_idx:end_idx] | |
target = self.data[i+1:i+1+seq_len] | |
data_out = data.transpose(0, 1).contiguous().to(self.device) | |
target_out = target.transpose(0, 1).contiguous().to(self.device) | |
return data_out, target_out, seq_len | |
def get_fixlen_iter(self, start=0): | |
for i in range(start, self.data.size(0) - 1, self.bptt): | |
yield self.get_batch(i) | |
def get_varlen_iter(self, start=0, std=5, min_len=5, max_deviation=3): | |
max_len = self.bptt + max_deviation * std | |
i = start | |
while True: | |
bptt = self.bptt if np.random.random() < 0.95 else self.bptt / 2. | |
bptt = min(max_len, max(min_len, int(np.random.normal(bptt, std)))) | |
data, target, seq_len = self.get_batch(i, bptt) | |
i += seq_len | |
yield data, target, seq_len | |
if i >= self.data.size(0) - 2: | |
break | |
def __iter__(self): | |
return self.get_fixlen_iter() | |
class LMShuffledIterator(object): | |
def __init__(self, data, bsz, bptt, device='cpu', ext_len=None, shuffle=False): | |
""" | |
data -- list[LongTensor] -- there is no order among the LongTensors | |
""" | |
self.data = data | |
self.bsz = bsz | |
self.bptt = bptt | |
self.ext_len = ext_len if ext_len is not None else 0 | |
self.device = device | |
self.shuffle = shuffle | |
def get_sent_stream(self): | |
# index iterator | |
epoch_indices = np.random.permutation(len(self.data)) if self.shuffle \ | |
else np.array(range(len(self.data))) | |
# sentence iterator | |
for idx in epoch_indices: | |
yield self.data[idx] | |
def stream_iterator(self, sent_stream): | |
# streams for each data in the batch | |
streams = [None] * self.bsz | |
data = torch.LongTensor(self.bptt, self.bsz) | |
target = torch.LongTensor(self.bptt, self.bsz) | |
n_retain = 0 | |
while True: | |
# data : [n_retain+bptt x bsz] | |
# target : [bptt x bsz] | |
data[n_retain:].fill_(-1) | |
target.fill_(-1) | |
valid_batch = True | |
for i in range(self.bsz): | |
n_filled = 0 | |
try: | |
while n_filled < self.bptt: | |
if streams[i] is None or len(streams[i]) <= 1: | |
streams[i] = next(sent_stream) | |
# number of new tokens to fill in | |
n_new = min(len(streams[i]) - 1, self.bptt - n_filled) | |
# first n_retain tokens are retained from last batch | |
data[n_retain+n_filled:n_retain+n_filled+n_new, i] = \ | |
streams[i][:n_new] | |
target[n_filled:n_filled+n_new, i] = \ | |
streams[i][1:n_new+1] | |
streams[i] = streams[i][n_new:] | |
n_filled += n_new | |
except StopIteration: | |
valid_batch = False | |
break | |
if not valid_batch: | |
return | |
data_out = data.transpose(0, 1).contiguous().to(self.device) | |
target_out = target.transpose(0, 1).contiguous().to(self.device) | |
yield data_out, target_out, self.bptt | |
n_retain = min(data.size(0), self.ext_len) | |
if n_retain > 0: | |
data[:n_retain] = data[-n_retain:] | |
data.resize_(n_retain + self.bptt, data.size(1)) | |
def __iter__(self): | |
# sent_stream is an iterator | |
sent_stream = self.get_sent_stream() | |
for batch in self.stream_iterator(sent_stream): | |
yield batch | |
class LMMultiFileIterator(LMShuffledIterator): | |
def __init__(self, paths, vocab, bsz, bptt, device='cpu', ext_len=None, | |
shuffle=False): | |
self.paths = paths | |
self.vocab = vocab | |
self.bsz = bsz | |
self.bptt = bptt | |
self.ext_len = ext_len if ext_len is not None else 0 | |
self.device = device | |
self.shuffle = shuffle | |
def get_sent_stream(self, path): | |
sents = self.vocab.encode_file(path, add_double_eos=True) | |
if self.shuffle: | |
np.random.shuffle(sents) | |
sent_stream = iter(sents) | |
return sent_stream | |
def __iter__(self): | |
if self.shuffle: | |
np.random.shuffle(self.paths) | |
for path in self.paths: | |
# sent_stream is an iterator | |
sent_stream = self.get_sent_stream(path) | |
for batch in self.stream_iterator(sent_stream): | |
yield batch | |
class TransfoXLCorpus(object): | |
def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs): | |
""" | |
Instantiate a pre-processed corpus. | |
""" | |
vocab = TransfoXLTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) | |
if pretrained_model_name_or_path in PRETRAINED_CORPUS_ARCHIVE_MAP: | |
corpus_file = PRETRAINED_CORPUS_ARCHIVE_MAP[pretrained_model_name_or_path] | |
else: | |
corpus_file = os.path.join(pretrained_model_name_or_path, CORPUS_NAME) | |
# redirect to the cache, if necessary | |
try: | |
resolved_corpus_file = cached_path(corpus_file, cache_dir=cache_dir) | |
except EnvironmentError: | |
logger.error( | |
"Corpus '{}' was not found in corpus list ({}). " | |
"We assumed '{}' was a path or url but couldn't find files {} " | |
"at this path or url.".format( | |
pretrained_model_name_or_path, | |
', '.join(PRETRAINED_CORPUS_ARCHIVE_MAP.keys()), | |
pretrained_model_name_or_path, | |
corpus_file)) | |
return None | |
if resolved_corpus_file == corpus_file: | |
logger.info("loading corpus file {}".format(corpus_file)) | |
else: | |
logger.info("loading corpus file {} from cache at {}".format( | |
corpus_file, resolved_corpus_file)) | |
# Instantiate tokenizer. | |
corpus = cls(*inputs, **kwargs) | |
corpus_dict = torch.load(resolved_corpus_file) | |
for key, value in corpus_dict.items(): | |
corpus.__dict__[key] = value | |
corpus.vocab = vocab | |
if corpus.train is not None: | |
corpus.train = torch.tensor(corpus.train, dtype=torch.long) | |
if corpus.valid is not None: | |
corpus.valid = torch.tensor(corpus.valid, dtype=torch.long) | |
if corpus.test is not None: | |
corpus.test = torch.tensor(corpus.test, dtype=torch.long) | |
return corpus | |
def __init__(self, *args, **kwargs): | |
self.vocab = TransfoXLTokenizer(*args, **kwargs) | |
self.dataset = None | |
self.train = None | |
self.valid = None | |
self.test = None | |
def build_corpus(self, path, dataset): | |
self.dataset = dataset | |
if self.dataset in ['ptb', 'wt2', 'enwik8', 'text8']: | |
self.vocab.count_file(os.path.join(path, 'train.txt')) | |
self.vocab.count_file(os.path.join(path, 'valid.txt')) | |
self.vocab.count_file(os.path.join(path, 'test.txt')) | |
elif self.dataset == 'wt103': | |
self.vocab.count_file(os.path.join(path, 'train.txt')) | |
elif self.dataset == 'lm1b': | |
train_path_pattern = os.path.join( | |
path, '1-billion-word-language-modeling-benchmark-r13output', | |
'training-monolingual.tokenized.shuffled', 'news.en-*') | |
train_paths = glob.glob(train_path_pattern) | |
# the vocab will load from file when build_vocab() is called | |
self.vocab.build_vocab() | |
if self.dataset in ['ptb', 'wt2', 'wt103']: | |
self.train = self.vocab.encode_file( | |
os.path.join(path, 'train.txt'), ordered=True) | |
self.valid = self.vocab.encode_file( | |
os.path.join(path, 'valid.txt'), ordered=True) | |
self.test = self.vocab.encode_file( | |
os.path.join(path, 'test.txt'), ordered=True) | |
elif self.dataset in ['enwik8', 'text8']: | |
self.train = self.vocab.encode_file( | |
os.path.join(path, 'train.txt'), ordered=True, add_eos=False) | |
self.valid = self.vocab.encode_file( | |
os.path.join(path, 'valid.txt'), ordered=True, add_eos=False) | |
self.test = self.vocab.encode_file( | |
os.path.join(path, 'test.txt'), ordered=True, add_eos=False) | |
elif self.dataset == 'lm1b': | |
self.train = train_paths | |
self.valid = self.vocab.encode_file( | |
os.path.join(path, 'valid.txt'), ordered=False, add_double_eos=True) | |
self.test = self.vocab.encode_file( | |
os.path.join(path, 'test.txt'), ordered=False, add_double_eos=True) | |
def get_iterator(self, split, *args, **kwargs): | |
if split == 'train': | |
if self.dataset in ['ptb', 'wt2', 'wt103', 'enwik8', 'text8']: | |
data_iter = LMOrderedIterator(self.train, *args, **kwargs) | |
elif self.dataset == 'lm1b': | |
kwargs['shuffle'] = True | |
data_iter = LMMultiFileIterator(self.train, self.vocab, *args, **kwargs) | |
elif split in ['valid', 'test']: | |
data = self.valid if split == 'valid' else self.test | |
if self.dataset in ['ptb', 'wt2', 'wt103', 'enwik8', 'text8']: | |
data_iter = LMOrderedIterator(data, *args, **kwargs) | |
elif self.dataset == 'lm1b': | |
data_iter = LMShuffledIterator(data, *args, **kwargs) | |
return data_iter | |
def get_lm_corpus(datadir, dataset): | |
fn = os.path.join(datadir, 'cache.pt') | |
fn_pickle = os.path.join(datadir, 'cache.pkl') | |
if os.path.exists(fn): | |
logger.info('Loading cached dataset...') | |
corpus = torch.load(fn_pickle) | |
elif os.path.exists(fn): | |
logger.info('Loading cached dataset from pickle...') | |
with open(fn, "rb") as fp: | |
corpus = pickle.load(fp) | |
else: | |
logger.info('Producing dataset {}...'.format(dataset)) | |
kwargs = {} | |
if dataset in ['wt103', 'wt2']: | |
kwargs['special'] = ['<eos>'] | |
kwargs['lower_case'] = False | |
elif dataset == 'ptb': | |
kwargs['special'] = ['<eos>'] | |
kwargs['lower_case'] = True | |
elif dataset == 'lm1b': | |
kwargs['special'] = [] | |
kwargs['lower_case'] = False | |
kwargs['vocab_file'] = os.path.join(datadir, '1b_word_vocab.txt') | |
elif dataset in ['enwik8', 'text8']: | |
pass | |
corpus = TransfoXLCorpus(datadir, dataset, **kwargs) | |
torch.save(corpus, fn) | |
return corpus | |