Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" PyTorch XLNet model. | |
""" | |
from __future__ import absolute_import, division, print_function, unicode_literals | |
import json | |
import logging | |
import math | |
import os | |
import sys | |
from io import open | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from torch.nn import CrossEntropyLoss, MSELoss | |
from .modeling_utils import PreTrainedModel, prune_linear_layer, SequenceSummary, PoolerAnswerClass, PoolerEndLogits, PoolerStartLogits | |
from .configuration_xlnet import XLNetConfig | |
from .file_utils import add_start_docstrings | |
logger = logging.getLogger(__name__) | |
XLNET_PRETRAINED_MODEL_ARCHIVE_MAP = { | |
'xlnet-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-base-cased-pytorch_model.bin", | |
'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-pytorch_model.bin", | |
} | |
def build_tf_xlnet_to_pytorch_map(model, config, tf_weights=None): | |
""" A map of modules from TF to PyTorch. | |
I use a map to keep the PyTorch model as | |
identical to the original PyTorch model as possible. | |
""" | |
tf_to_pt_map = {} | |
if hasattr(model, 'transformer'): | |
if hasattr(model, 'lm_loss'): | |
# We will load also the output bias | |
tf_to_pt_map['model/lm_loss/bias'] = model.lm_loss.bias | |
if hasattr(model, 'sequence_summary') and 'model/sequnece_summary/summary/kernel' in tf_weights: | |
# We will load also the sequence summary | |
tf_to_pt_map['model/sequnece_summary/summary/kernel'] = model.sequence_summary.summary.weight | |
tf_to_pt_map['model/sequnece_summary/summary/bias'] = model.sequence_summary.summary.bias | |
if hasattr(model, 'logits_proj') and config.finetuning_task is not None \ | |
and 'model/regression_{}/logit/kernel'.format(config.finetuning_task) in tf_weights: | |
tf_to_pt_map['model/regression_{}/logit/kernel'.format(config.finetuning_task)] = model.logits_proj.weight | |
tf_to_pt_map['model/regression_{}/logit/bias'.format(config.finetuning_task)] = model.logits_proj.bias | |
# Now load the rest of the transformer | |
model = model.transformer | |
# Embeddings and output | |
tf_to_pt_map.update({'model/transformer/word_embedding/lookup_table': model.word_embedding.weight, | |
'model/transformer/mask_emb/mask_emb': model.mask_emb}) | |
# Transformer blocks | |
for i, b in enumerate(model.layer): | |
layer_str = "model/transformer/layer_%d/" % i | |
tf_to_pt_map.update({ | |
layer_str + "rel_attn/LayerNorm/gamma": b.rel_attn.layer_norm.weight, | |
layer_str + "rel_attn/LayerNorm/beta": b.rel_attn.layer_norm.bias, | |
layer_str + "rel_attn/o/kernel": b.rel_attn.o, | |
layer_str + "rel_attn/q/kernel": b.rel_attn.q, | |
layer_str + "rel_attn/k/kernel": b.rel_attn.k, | |
layer_str + "rel_attn/r/kernel": b.rel_attn.r, | |
layer_str + "rel_attn/v/kernel": b.rel_attn.v, | |
layer_str + "ff/LayerNorm/gamma": b.ff.layer_norm.weight, | |
layer_str + "ff/LayerNorm/beta": b.ff.layer_norm.bias, | |
layer_str + "ff/layer_1/kernel": b.ff.layer_1.weight, | |
layer_str + "ff/layer_1/bias": b.ff.layer_1.bias, | |
layer_str + "ff/layer_2/kernel": b.ff.layer_2.weight, | |
layer_str + "ff/layer_2/bias": b.ff.layer_2.bias, | |
}) | |
# Relative positioning biases | |
if config.untie_r: | |
r_r_list = [] | |
r_w_list = [] | |
r_s_list = [] | |
seg_embed_list = [] | |
for b in model.layer: | |
r_r_list.append(b.rel_attn.r_r_bias) | |
r_w_list.append(b.rel_attn.r_w_bias) | |
r_s_list.append(b.rel_attn.r_s_bias) | |
seg_embed_list.append(b.rel_attn.seg_embed) | |
else: | |
r_r_list = [model.r_r_bias] | |
r_w_list = [model.r_w_bias] | |
r_s_list = [model.r_s_bias] | |
seg_embed_list = [model.seg_embed] | |
tf_to_pt_map.update({ | |
'model/transformer/r_r_bias': r_r_list, | |
'model/transformer/r_w_bias': r_w_list, | |
'model/transformer/r_s_bias': r_s_list, | |
'model/transformer/seg_embed': seg_embed_list}) | |
return tf_to_pt_map | |
def load_tf_weights_in_xlnet(model, config, tf_path): | |
""" Load tf checkpoints in a pytorch model | |
""" | |
try: | |
import numpy as np | |
import tensorflow as tf | |
except ImportError: | |
logger.error("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " | |
"https://www.tensorflow.org/install/ for installation instructions.") | |
raise | |
# Load weights from TF model | |
init_vars = tf.train.list_variables(tf_path) | |
tf_weights = {} | |
for name, shape in init_vars: | |
logger.info("Loading TF weight {} with shape {}".format(name, shape)) | |
array = tf.train.load_variable(tf_path, name) | |
tf_weights[name] = array | |
# Build TF to PyTorch weights loading map | |
tf_to_pt_map = build_tf_xlnet_to_pytorch_map(model, config, tf_weights) | |
for name, pointer in tf_to_pt_map.items(): | |
logger.info("Importing {}".format(name)) | |
if name not in tf_weights: | |
logger.info("{} not in tf pre-trained weights, skipping".format(name)) | |
continue | |
array = tf_weights[name] | |
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v | |
# which are not required for using pretrained model | |
if 'kernel' in name and ('ff' in name or 'summary' in name or 'logit' in name): | |
logger.info("Transposing") | |
array = np.transpose(array) | |
if isinstance(pointer, list): | |
# Here we will split the TF weigths | |
assert len(pointer) == array.shape[0] | |
for i, p_i in enumerate(pointer): | |
arr_i = array[i, ...] | |
try: | |
assert p_i.shape == arr_i.shape | |
except AssertionError as e: | |
e.args += (p_i.shape, arr_i.shape) | |
raise | |
logger.info("Initialize PyTorch weight {} for layer {}".format(name, i)) | |
p_i.data = torch.from_numpy(arr_i) | |
else: | |
try: | |
assert pointer.shape == array.shape | |
except AssertionError as e: | |
e.args += (pointer.shape, array.shape) | |
raise | |
logger.info("Initialize PyTorch weight {}".format(name)) | |
pointer.data = torch.from_numpy(array) | |
tf_weights.pop(name, None) | |
tf_weights.pop(name + '/Adam', None) | |
tf_weights.pop(name + '/Adam_1', None) | |
logger.info("Weights not copied to PyTorch model: {}".format(', '.join(tf_weights.keys()))) | |
return model | |
def gelu(x): | |
""" Implementation of the gelu activation function. | |
XLNet is using OpenAI GPT's gelu (not exactly the same as BERT) | |
Also see https://arxiv.org/abs/1606.08415 | |
""" | |
cdf = 0.5 * (1.0 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) | |
return x * cdf | |
def swish(x): | |
return x * torch.sigmoid(x) | |
ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish} | |
try: | |
from apex.normalization.fused_layer_norm import FusedLayerNorm as XLNetLayerNorm | |
except (ImportError, AttributeError) as e: | |
logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .") | |
from torch.nn import LayerNorm as XLNetLayerNorm | |
class XLNetRelativeAttention(nn.Module): | |
def __init__(self, config): | |
super(XLNetRelativeAttention, self).__init__() | |
self.output_attentions = config.output_attentions | |
if config.d_model % config.n_head != 0: | |
raise ValueError( | |
"The hidden size (%d) is not a multiple of the number of attention " | |
"heads (%d)" % (config.d_model, config.n_head)) | |
self.n_head = config.n_head | |
self.d_head = config.d_head | |
self.d_model = config.d_model | |
self.scale = 1 / (config.d_head ** 0.5) | |
self.q = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head)) | |
self.k = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head)) | |
self.v = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head)) | |
self.o = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head)) | |
self.r = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head)) | |
self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head)) | |
self.r_s_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head)) | |
self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head)) | |
self.seg_embed = nn.Parameter(torch.FloatTensor(2, self.n_head, self.d_head)) | |
self.layer_norm = XLNetLayerNorm(config.d_model, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.dropout) | |
def prune_heads(self, heads): | |
raise NotImplementedError | |
def rel_shift(x, klen=-1): | |
"""perform relative shift to form the relative attention score.""" | |
x_size = x.shape | |
x = x.reshape(x_size[1], x_size[0], x_size[2], x_size[3]) | |
x = x[1:, ...] | |
x = x.reshape(x_size[0], x_size[1] - 1, x_size[2], x_size[3]) | |
# x = x[:, 0:klen, :, :] | |
x = torch.index_select(x, 1, torch.arange(klen, device=x.device, dtype=torch.long)) | |
return x | |
def rel_attn_core(self, q_head, k_head_h, v_head_h, k_head_r, seg_mat=None, attn_mask=None, head_mask=None): | |
"""Core relative positional attention operations.""" | |
# content based attention score | |
ac = torch.einsum('ibnd,jbnd->ijbn', q_head + self.r_w_bias, k_head_h) | |
# position based attention score | |
bd = torch.einsum('ibnd,jbnd->ijbn', q_head + self.r_r_bias, k_head_r) | |
bd = self.rel_shift(bd, klen=ac.shape[1]) | |
# segment based attention score | |
if seg_mat is None: | |
ef = 0 | |
else: | |
ef = torch.einsum('ibnd,snd->ibns', q_head + self.r_s_bias, self.seg_embed) | |
ef = torch.einsum('ijbs,ibns->ijbn', seg_mat, ef) | |
# merge attention scores and perform masking | |
attn_score = (ac + bd + ef) * self.scale | |
if attn_mask is not None: | |
# attn_score = attn_score * (1 - attn_mask) - 1e30 * attn_mask | |
if attn_mask.dtype == torch.float16: | |
attn_score = attn_score - 65500 * attn_mask | |
else: | |
attn_score = attn_score - 1e30 * attn_mask | |
# attention probability | |
attn_prob = F.softmax(attn_score, dim=1) | |
attn_prob = self.dropout(attn_prob) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attn_prob = attn_prob * head_mask | |
# attention output | |
attn_vec = torch.einsum('ijbn,jbnd->ibnd', attn_prob, v_head_h) | |
if self.output_attentions: | |
return attn_vec, attn_prob | |
return attn_vec | |
def post_attention(self, h, attn_vec, residual=True): | |
"""Post-attention processing.""" | |
# post-attention projection (back to `d_model`) | |
attn_out = torch.einsum('ibnd,hnd->ibh', attn_vec, self.o) | |
attn_out = self.dropout(attn_out) | |
if residual: | |
attn_out = attn_out + h | |
output = self.layer_norm(attn_out) | |
return output | |
def forward(self, h, g, | |
attn_mask_h, attn_mask_g, | |
r, seg_mat, | |
mems=None, target_mapping=None, head_mask=None): | |
if g is not None: | |
###### Two-stream attention with relative positional encoding. | |
# content based attention score | |
if mems is not None and mems.dim() > 1: | |
cat = torch.cat([mems, h], dim=0) | |
else: | |
cat = h | |
# content-based key head | |
k_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.k) | |
# content-based value head | |
v_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.v) | |
# position-based key head | |
k_head_r = torch.einsum('ibh,hnd->ibnd', r, self.r) | |
##### h-stream | |
# content-stream query head | |
q_head_h = torch.einsum('ibh,hnd->ibnd', h, self.q) | |
# core attention ops | |
attn_vec_h = self.rel_attn_core( | |
q_head_h, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_h, head_mask=head_mask) | |
if self.output_attentions: | |
attn_vec_h, attn_prob_h = attn_vec_h | |
# post processing | |
output_h = self.post_attention(h, attn_vec_h) | |
##### g-stream | |
# query-stream query head | |
q_head_g = torch.einsum('ibh,hnd->ibnd', g, self.q) | |
# core attention ops | |
if target_mapping is not None: | |
q_head_g = torch.einsum('mbnd,mlb->lbnd', q_head_g, target_mapping) | |
attn_vec_g = self.rel_attn_core( | |
q_head_g, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_g, head_mask=head_mask) | |
if self.output_attentions: | |
attn_vec_g, attn_prob_g = attn_vec_g | |
attn_vec_g = torch.einsum('lbnd,mlb->mbnd', attn_vec_g, target_mapping) | |
else: | |
attn_vec_g = self.rel_attn_core( | |
q_head_g, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_g, head_mask=head_mask) | |
if self.output_attentions: | |
attn_vec_g, attn_prob_g = attn_vec_g | |
# post processing | |
output_g = self.post_attention(g, attn_vec_g) | |
if self.output_attentions: | |
attn_prob = attn_prob_h, attn_prob_g | |
else: | |
###### Multi-head attention with relative positional encoding | |
if mems is not None and mems.dim() > 1: | |
cat = torch.cat([mems, h], dim=0) | |
else: | |
cat = h | |
# content heads | |
q_head_h = torch.einsum('ibh,hnd->ibnd', h, self.q) | |
k_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.k) | |
v_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.v) | |
# positional heads | |
k_head_r = torch.einsum('ibh,hnd->ibnd', r, self.r) | |
# core attention ops | |
attn_vec = self.rel_attn_core( | |
q_head_h, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_h, head_mask=head_mask) | |
if self.output_attentions: | |
attn_vec, attn_prob = attn_vec | |
# post processing | |
output_h = self.post_attention(h, attn_vec) | |
output_g = None | |
outputs = (output_h, output_g) | |
if self.output_attentions: | |
outputs = outputs + (attn_prob,) | |
return outputs | |
class XLNetFeedForward(nn.Module): | |
def __init__(self, config): | |
super(XLNetFeedForward, self).__init__() | |
self.layer_norm = XLNetLayerNorm(config.d_model, eps=config.layer_norm_eps) | |
self.layer_1 = nn.Linear(config.d_model, config.d_inner) | |
self.layer_2 = nn.Linear(config.d_inner, config.d_model) | |
self.dropout = nn.Dropout(config.dropout) | |
if isinstance(config.ff_activation, str) or \ | |
(sys.version_info[0] == 2 and isinstance(config.ff_activation, unicode)): | |
self.activation_function = ACT2FN[config.ff_activation] | |
else: | |
self.activation_function = config.ff_activation | |
def forward(self, inp): | |
output = inp | |
output = self.layer_1(output) | |
output = self.activation_function(output) | |
output = self.dropout(output) | |
output = self.layer_2(output) | |
output = self.dropout(output) | |
output = self.layer_norm(output + inp) | |
return output | |
class XLNetLayer(nn.Module): | |
def __init__(self, config): | |
super(XLNetLayer, self).__init__() | |
self.rel_attn = XLNetRelativeAttention(config) | |
self.ff = XLNetFeedForward(config) | |
self.dropout = nn.Dropout(config.dropout) | |
def forward(self, output_h, output_g, | |
attn_mask_h, attn_mask_g, | |
r, seg_mat, mems=None, target_mapping=None, head_mask=None): | |
outputs = self.rel_attn(output_h, output_g, attn_mask_h, attn_mask_g, | |
r, seg_mat, mems=mems, target_mapping=target_mapping, | |
head_mask=head_mask) | |
output_h, output_g = outputs[:2] | |
if output_g is not None: | |
output_g = self.ff(output_g) | |
output_h = self.ff(output_h) | |
outputs = (output_h, output_g) + outputs[2:] # Add again attentions if there are there | |
return outputs | |
class XLNetPreTrainedModel(PreTrainedModel): | |
""" An abstract class to handle weights initialization and | |
a simple interface for dowloading and loading pretrained models. | |
""" | |
config_class = XLNetConfig | |
pretrained_model_archive_map = XLNET_PRETRAINED_MODEL_ARCHIVE_MAP | |
load_tf_weights = load_tf_weights_in_xlnet | |
base_model_prefix = "transformer" | |
def _init_weights(self, module): | |
""" Initialize the weights. | |
""" | |
if isinstance(module, (nn.Linear, nn.Embedding)): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if isinstance(module, nn.Linear) and module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, XLNetLayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
elif isinstance(module, XLNetRelativeAttention): | |
for param in [module.q, module.k, module.v, module.o, module.r, | |
module.r_r_bias, module.r_s_bias, module.r_w_bias, | |
module.seg_embed]: | |
param.data.normal_(mean=0.0, std=self.config.initializer_range) | |
elif isinstance(module, XLNetModel): | |
module.mask_emb.data.normal_(mean=0.0, std=self.config.initializer_range) | |
XLNET_START_DOCSTRING = r""" The XLNet model was proposed in | |
`XLNet: Generalized Autoregressive Pretraining for Language Understanding`_ | |
by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le. | |
XLnet is an extension of the Transformer-XL model pre-trained using an autoregressive method | |
to learn bidirectional contexts by maximizing the expected likelihood over all permutations | |
of the input sequence factorization order. | |
The specific attention pattern can be controlled at training and test time using the `perm_mask` input. | |
Do to the difficulty of training a fully auto-regressive model over various factorization order, | |
XLNet is pretrained using only a sub-set of the output tokens as target which are selected | |
with the `target_mapping` input. | |
To use XLNet for sequential decoding (i.e. not in fully bi-directional setting), use the `perm_mask` and | |
`target_mapping` inputs to control the attention span and outputs (see examples in `examples/run_generation.py`) | |
This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and | |
refer to the PyTorch documentation for all matter related to general usage and behavior. | |
.. _`XLNet: Generalized Autoregressive Pretraining for Language Understanding`: | |
http://arxiv.org/abs/1906.08237 | |
.. _`torch.nn.Module`: | |
https://pytorch.org/docs/stable/nn.html#module | |
Parameters: | |
config (:class:`~pytorch_transformers.XLNetConfig`): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the configuration. | |
Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights. | |
""" | |
XLNET_INPUTS_DOCSTRING = r""" | |
Inputs: | |
**input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: | |
Indices of input sequence tokens in the vocabulary. | |
XLNet is a model with relative position embeddings so you can either pad the inputs on | |
the right or on the left. | |
Indices can be obtained using :class:`pytorch_transformers.XLNetTokenizer`. | |
See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and | |
:func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details. | |
**token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: | |
A parallel sequence of tokens (can be used to indicate various portions of the inputs). | |
The type indices in XLNet are NOT selected in the vocabulary, they can be arbitrary numbers and | |
the important thing is that they should be different for tokens which belong to different segments. | |
The model will compute relative segment differences from the given type indices: | |
0 if the segment id of two tokens are the same, 1 if not. | |
**attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``: | |
Mask to avoid performing attention on padding token indices. | |
Mask values selected in ``[0, 1]``: | |
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. | |
**mems**: (`optional`) | |
list of ``torch.FloatTensor`` (one for each layer): | |
that contains pre-computed hidden-states (key and values in the attention blocks) as output by the model | |
(see `mems` output below). Can be used to speed up sequential decoding and attend to longer context. | |
To activate mems you need to set up config.mem_len to a positive value which will be the max number of tokens in | |
the memory output by the model. E.g. `model = XLNetModel.from_pretrained('xlnet-base-case, mem_len=1024)` will | |
instantiate a model which can use up to 1024 tokens of memory (in addition to the input it self). | |
**perm_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, sequence_length)``: | |
Mask to indicate the attention pattern for each input token with values selected in ``[0, 1]``: | |
If ``perm_mask[k, i, j] = 0``, i attend to j in batch k; | |
if ``perm_mask[k, i, j] = 1``, i does not attend to j in batch k. | |
If None, each token attends to all the others (full bidirectional attention). | |
Only used during pretraining (to define factorization order) or for sequential decoding (generation). | |
**target_mapping**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, num_predict, sequence_length)``: | |
Mask to indicate the output tokens to use. | |
If ``target_mapping[k, i, j] = 1``, the i-th predict in batch k is on the j-th token. | |
Only used during pretraining for partial prediction or for sequential decoding (generation). | |
**token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: | |
A parallel sequence of tokens (can be used to indicate various portions of the inputs). | |
The embeddings from these tokens will be summed with the respective token embeddings. | |
Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices). | |
**input_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``: | |
Mask to avoid performing attention on padding token indices. | |
Negative of `attention_mask`, i.e. with 0 for real tokens and 1 for padding. | |
Kept for compatibility with the original code base. | |
You can only uses one of `input_mask` and `attention_mask` | |
Mask values selected in ``[0, 1]``: | |
``1`` for tokens that are MASKED, ``0`` for tokens that are NOT MASKED. | |
**head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``: | |
Mask to nullify selected heads of the self-attention modules. | |
Mask values selected in ``[0, 1]``: | |
``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**. | |
""" | |
class XLNetModel(XLNetPreTrainedModel): | |
r""" | |
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
**last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)`` | |
Sequence of hidden-states at the last layer of the model. | |
**mems**: | |
list of ``torch.FloatTensor`` (one for each layer): | |
that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model | |
if config.mem_len > 0 else tuple of None. Can be used to speed up sequential decoding and attend to longer context. | |
See details in the docstring of the `mems` input above. | |
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
of shape ``(batch_size, sequence_length, hidden_size)``: | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
**attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
Examples:: | |
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased') | |
model = XLNetModel.from_pretrained('xlnet-large-cased') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids) | |
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple | |
""" | |
def __init__(self, config): | |
super(XLNetModel, self).__init__(config) | |
self.output_attentions = config.output_attentions | |
self.output_hidden_states = config.output_hidden_states | |
self.mem_len = config.mem_len | |
self.reuse_len = config.reuse_len | |
self.d_model = config.d_model | |
self.same_length = config.same_length | |
self.attn_type = config.attn_type | |
self.bi_data = config.bi_data | |
self.clamp_len = config.clamp_len | |
self.n_layer = config.n_layer | |
self.word_embedding = nn.Embedding(config.n_token, config.d_model) | |
self.mask_emb = nn.Parameter(torch.FloatTensor(1, 1, config.d_model)) | |
self.layer = nn.ModuleList([XLNetLayer(config) for _ in range(config.n_layer)]) | |
self.dropout = nn.Dropout(config.dropout) | |
self.init_weights() | |
def _resize_token_embeddings(self, new_num_tokens): | |
self.word_embedding = self._get_resized_embeddings(self.word_embedding, new_num_tokens) | |
return self.word_embedding | |
def _prune_heads(self, heads_to_prune): | |
raise NotImplementedError | |
def create_mask(self, qlen, mlen): | |
""" | |
Creates causal attention mask. Float mask where 1.0 indicates masked, 0.0 indicates not-masked. | |
Args: | |
qlen: TODO Lysandre didn't fill | |
mlen: TODO Lysandre didn't fill | |
:: | |
same_length=False: same_length=True: | |
<mlen > < qlen > <mlen > < qlen > | |
^ [0 0 0 0 0 1 1 1 1] [0 0 0 0 0 1 1 1 1] | |
[0 0 0 0 0 0 1 1 1] [1 0 0 0 0 0 1 1 1] | |
qlen [0 0 0 0 0 0 0 1 1] [1 1 0 0 0 0 0 1 1] | |
[0 0 0 0 0 0 0 0 1] [1 1 1 0 0 0 0 0 1] | |
v [0 0 0 0 0 0 0 0 0] [1 1 1 1 0 0 0 0 0] | |
""" | |
attn_mask = torch.ones([qlen, qlen]) | |
mask_up = torch.triu(attn_mask, diagonal=1) | |
attn_mask_pad = torch.zeros([qlen, mlen]) | |
ret = torch.cat([attn_mask_pad, mask_up], dim=1) | |
if self.same_length: | |
mask_lo = torch.tril(attn_mask, diagonal=-1) | |
ret = torch.cat([ret[:, :qlen] + mask_lo, ret[:, qlen:]], dim=1) | |
ret = ret.to(next(self.parameters())) | |
return ret | |
def cache_mem(self, curr_out, prev_mem): | |
"""cache hidden states into memory.""" | |
if self.mem_len is None or self.mem_len == 0: | |
return None | |
else: | |
if self.reuse_len is not None and self.reuse_len > 0: | |
curr_out = curr_out[:self.reuse_len] | |
if prev_mem is None: | |
new_mem = curr_out[-self.mem_len:] | |
else: | |
new_mem = torch.cat([prev_mem, curr_out], dim=0)[-self.mem_len:] | |
return new_mem.detach() | |
def positional_embedding(pos_seq, inv_freq, bsz=None): | |
sinusoid_inp = torch.einsum('i,d->id', pos_seq, inv_freq) | |
pos_emb = torch.cat([torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)], dim=-1) | |
pos_emb = pos_emb[:, None, :] | |
if bsz is not None: | |
pos_emb = pos_emb.expand(-1, bsz, -1) | |
return pos_emb | |
def relative_positional_encoding(self, qlen, klen, bsz=None): | |
"""create relative positional encoding.""" | |
freq_seq = torch.arange(0, self.d_model, 2.0, dtype=torch.float) | |
inv_freq = 1 / torch.pow(10000, (freq_seq / self.d_model)) | |
if self.attn_type == 'bi': | |
# beg, end = klen - 1, -qlen | |
beg, end = klen, -qlen | |
elif self.attn_type == 'uni': | |
# beg, end = klen - 1, -1 | |
beg, end = klen, -1 | |
else: | |
raise ValueError('Unknown `attn_type` {}.'.format(self.attn_type)) | |
if self.bi_data: | |
fwd_pos_seq = torch.arange(beg, end, -1.0, dtype=torch.float) | |
bwd_pos_seq = torch.arange(-beg, -end, 1.0, dtype=torch.float) | |
if self.clamp_len > 0: | |
fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len) | |
bwd_pos_seq = bwd_pos_seq.clamp(-self.clamp_len, self.clamp_len) | |
if bsz is not None: | |
fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz//2) | |
bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq, bsz//2) | |
else: | |
fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq) | |
bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq) | |
pos_emb = torch.cat([fwd_pos_emb, bwd_pos_emb], dim=1) | |
else: | |
fwd_pos_seq = torch.arange(beg, end, -1.0) | |
if self.clamp_len > 0: | |
fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len) | |
pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz) | |
pos_emb = pos_emb.to(next(self.parameters())) | |
return pos_emb | |
def forward(self, input_ids, attention_mask=None, mems=None, perm_mask=None, target_mapping=None, | |
token_type_ids=None, input_mask=None, head_mask=None): | |
# the original code for XLNet uses shapes [len, bsz] with the batch dimension at the end | |
# but we want a unified interface in the library with the batch size on the first dimension | |
# so we move here the first dimension (batch) to the end | |
input_ids = input_ids.transpose(0, 1).contiguous() | |
token_type_ids = token_type_ids.transpose(0, 1).contiguous() if token_type_ids is not None else None | |
input_mask = input_mask.transpose(0, 1).contiguous() if input_mask is not None else None | |
attention_mask = attention_mask.transpose(0, 1).contiguous() if attention_mask is not None else None | |
perm_mask = perm_mask.permute(1, 2, 0).contiguous() if perm_mask is not None else None | |
target_mapping = target_mapping.permute(1, 2, 0).contiguous() if target_mapping is not None else None | |
qlen, bsz = input_ids.shape[0], input_ids.shape[1] | |
mlen = mems[0].shape[0] if mems is not None and mems[0] is not None else 0 | |
klen = mlen + qlen | |
dtype_float = next(self.parameters()).dtype | |
device = next(self.parameters()).device | |
##### Attention mask | |
# causal attention mask | |
if self.attn_type == 'uni': | |
attn_mask = self.create_mask(qlen, mlen) | |
attn_mask = attn_mask[:, :, None, None] | |
elif self.attn_type == 'bi': | |
attn_mask = None | |
else: | |
raise ValueError('Unsupported attention type: {}'.format(self.attn_type)) | |
# data mask: input mask & perm mask | |
assert input_mask is None or attention_mask is None, "You can only use one of input_mask (uses 1 for padding) " | |
"or attention_mask (uses 0 for padding, added for compatbility with BERT). Please choose one." | |
if input_mask is None and attention_mask is not None: | |
input_mask = 1.0 - attention_mask | |
if input_mask is not None and perm_mask is not None: | |
data_mask = input_mask[None] + perm_mask | |
elif input_mask is not None and perm_mask is None: | |
data_mask = input_mask[None] | |
elif input_mask is None and perm_mask is not None: | |
data_mask = perm_mask | |
else: | |
data_mask = None | |
if data_mask is not None: | |
# all mems can be attended to | |
if mlen > 0: | |
mems_mask = torch.zeros([data_mask.shape[0], mlen, bsz]).to(data_mask) | |
data_mask = torch.cat([mems_mask, data_mask], dim=1) | |
if attn_mask is None: | |
attn_mask = data_mask[:, :, :, None] | |
else: | |
attn_mask += data_mask[:, :, :, None] | |
if attn_mask is not None: | |
attn_mask = (attn_mask > 0).to(dtype_float) | |
if attn_mask is not None: | |
non_tgt_mask = -torch.eye(qlen).to(attn_mask) | |
if mlen > 0: | |
non_tgt_mask = torch.cat([torch.zeros([qlen, mlen]).to(attn_mask), non_tgt_mask], dim=-1) | |
non_tgt_mask = ((attn_mask + non_tgt_mask[:, :, None, None]) > 0).to(attn_mask) | |
else: | |
non_tgt_mask = None | |
##### Word embeddings and prepare h & g hidden states | |
word_emb_k = self.word_embedding(input_ids) | |
output_h = self.dropout(word_emb_k) | |
if target_mapping is not None: | |
word_emb_q = self.mask_emb.expand(target_mapping.shape[0], bsz, -1) | |
# else: # We removed the inp_q input which was same as target mapping | |
# inp_q_ext = inp_q[:, :, None] | |
# word_emb_q = inp_q_ext * self.mask_emb + (1 - inp_q_ext) * word_emb_k | |
output_g = self.dropout(word_emb_q) | |
else: | |
output_g = None | |
##### Segment embedding | |
if token_type_ids is not None: | |
# Convert `token_type_ids` to one-hot `seg_mat` | |
if mlen > 0: | |
mem_pad = torch.zeros([mlen, bsz], dtype=torch.long, device=device) | |
cat_ids = torch.cat([mem_pad, token_type_ids], dim=0) | |
else: | |
cat_ids = token_type_ids | |
# `1` indicates not in the same segment [qlen x klen x bsz] | |
seg_mat = (token_type_ids[:, None] != cat_ids[None, :]).long() | |
seg_mat = F.one_hot(seg_mat, num_classes=2).to(dtype_float) | |
else: | |
seg_mat = None | |
##### Positional encoding | |
pos_emb = self.relative_positional_encoding(qlen, klen, bsz=bsz) | |
pos_emb = self.dropout(pos_emb) | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer) | |
# and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head] | |
if head_mask is not None: | |
if head_mask.dim() == 1: | |
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0).unsqueeze(0) | |
head_mask = head_mask.expand(self.n_layer, -1, -1, -1, -1) | |
elif head_mask.dim() == 2: | |
head_mask = head_mask.unsqueeze(1).unsqueeze(1).unsqueeze(1) | |
head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility | |
else: | |
head_mask = [None] * self.n_layer | |
new_mems = () | |
if mems is None: | |
mems = [None] * len(self.layer) | |
attentions = [] | |
hidden_states = [] | |
for i, layer_module in enumerate(self.layer): | |
# cache new mems | |
new_mems = new_mems + (self.cache_mem(output_h, mems[i]),) | |
if self.output_hidden_states: | |
hidden_states.append((output_h, output_g) if output_g is not None else output_h) | |
outputs = layer_module(output_h, output_g, attn_mask_h=non_tgt_mask, attn_mask_g=attn_mask, | |
r=pos_emb, seg_mat=seg_mat, mems=mems[i], target_mapping=target_mapping, | |
head_mask=head_mask[i]) | |
output_h, output_g = outputs[:2] | |
if self.output_attentions: | |
attentions.append(outputs[2]) | |
# Add last hidden state | |
if self.output_hidden_states: | |
hidden_states.append((output_h, output_g) if output_g is not None else output_h) | |
output = self.dropout(output_g if output_g is not None else output_h) | |
# Prepare outputs, we transpose back here to shape [bsz, len, hidden_dim] (cf. beginning of forward() method) | |
outputs = (output.permute(1, 0, 2).contiguous(), new_mems) | |
if self.output_hidden_states: | |
if output_g is not None: | |
hidden_states = tuple(h.permute(1, 0, 2).contiguous() for hs in hidden_states for h in hs) | |
else: | |
hidden_states = tuple(hs.permute(1, 0, 2).contiguous() for hs in hidden_states) | |
outputs = outputs + (hidden_states,) | |
if self.output_attentions: | |
attentions = tuple(t.permute(2, 3, 0, 1).contiguous() for t in attentions) | |
outputs = outputs + (attentions,) | |
return outputs # outputs, new_mems, (hidden_states), (attentions) | |
class XLNetLMHeadModel(XLNetPreTrainedModel): | |
r""" | |
**labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: | |
Labels for language modeling. | |
Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids`` | |
Indices are selected in ``[-1, 0, ..., config.vocab_size]`` | |
All labels set to ``-1`` are ignored (masked), the loss is only | |
computed for labels in ``[0, ..., config.vocab_size]`` | |
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
Language modeling loss. | |
**prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)`` | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
**mems**: | |
list of ``torch.FloatTensor`` (one for each layer): | |
that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model | |
if config.mem_len > 0 else tuple of None. Can be used to speed up sequential decoding and attend to longer context. | |
See details in the docstring of the `mems` input above. | |
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
of shape ``(batch_size, sequence_length, hidden_size)``: | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
**attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
Examples:: | |
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased') | |
model = XLNetLMHeadModel.from_pretrained('xlnet-large-cased') | |
# We show how to setup inputs to predict a next token using a bi-directional context. | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is very <mask>")).unsqueeze(0) # We will predict the masked token | |
perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float) | |
perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token | |
target_mapping = torch.zeros((1, 1, input_ids.shape[1]), dtype=torch.float) # Shape [1, 1, seq_length] => let's predict one token | |
target_mapping[0, 0, -1] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token) | |
outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping) | |
next_token_logits = outputs[0] # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size] | |
""" | |
def __init__(self, config): | |
super(XLNetLMHeadModel, self).__init__(config) | |
self.attn_type = config.attn_type | |
self.same_length = config.same_length | |
self.transformer = XLNetModel(config) | |
self.lm_loss = nn.Linear(config.d_model, config.n_token, bias=True) | |
self.init_weights() | |
self.tie_weights() | |
def tie_weights(self): | |
""" Make sure we are sharing the embeddings | |
""" | |
self._tie_or_clone_weights(self.lm_loss, self.transformer.word_embedding) | |
def forward(self, input_ids, attention_mask=None, mems=None, perm_mask=None, target_mapping=None, | |
token_type_ids=None, input_mask=None, head_mask=None, labels=None): | |
transformer_outputs = self.transformer(input_ids, | |
attention_mask=attention_mask, | |
mems=mems, | |
perm_mask=perm_mask, | |
target_mapping=target_mapping, | |
token_type_ids=token_type_ids, | |
input_mask=input_mask, | |
head_mask=head_mask) | |
logits = self.lm_loss(transformer_outputs[0]) | |
outputs = (logits,) + transformer_outputs[1:] # Keep mems, hidden states, attentions if there are in it | |
if labels is not None: | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss(ignore_index=-1) | |
loss = loss_fct(logits.view(-1, logits.size(-1)), | |
labels.view(-1)) | |
outputs = (loss,) + outputs | |
return outputs # return (loss), logits, mems, (hidden states), (attentions) | |
class XLNetForSequenceClassification(XLNetPreTrainedModel): | |
r""" | |
**labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: | |
Labels for computing the sequence classification/regression loss. | |
Indices should be in ``[0, ..., config.num_labels - 1]``. | |
If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss), | |
If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy). | |
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
Classification (or regression if config.num_labels==1) loss. | |
**logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)`` | |
Classification (or regression if config.num_labels==1) scores (before SoftMax). | |
**mems**: | |
list of ``torch.FloatTensor`` (one for each layer): | |
that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model | |
if config.mem_len > 0 else tuple of None. Can be used to speed up sequential decoding and attend to longer context. | |
See details in the docstring of the `mems` input above. | |
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
of shape ``(batch_size, sequence_length, hidden_size)``: | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
**attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
Examples:: | |
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased') | |
model = XLNetForSequenceClassification.from_pretrained('xlnet-large-cased') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 | |
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids, labels=labels) | |
loss, logits = outputs[:2] | |
""" | |
def __init__(self, config): | |
super(XLNetForSequenceClassification, self).__init__(config) | |
self.num_labels = config.num_labels | |
self.transformer = XLNetModel(config) | |
self.sequence_summary = SequenceSummary(config) | |
self.logits_proj = nn.Linear(config.d_model, config.num_labels) | |
self.init_weights() | |
def forward(self, input_ids, attention_mask=None, mems=None, perm_mask=None, target_mapping=None, | |
token_type_ids=None, input_mask=None, head_mask=None, labels=None): | |
transformer_outputs = self.transformer(input_ids, | |
attention_mask=attention_mask, | |
mems=mems, | |
perm_mask=perm_mask, | |
target_mapping=target_mapping, | |
token_type_ids=token_type_ids, | |
input_mask=input_mask, | |
head_mask=head_mask) | |
output = transformer_outputs[0] | |
output = self.sequence_summary(output) | |
logits = self.logits_proj(output) | |
outputs = (logits,) + transformer_outputs[1:] # Keep mems, hidden states, attentions if there are in it | |
if labels is not None: | |
if self.num_labels == 1: | |
# We are doing regression | |
loss_fct = MSELoss() | |
loss = loss_fct(logits.view(-1), labels.view(-1)) | |
else: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
outputs = (loss,) + outputs | |
return outputs # return (loss), logits, mems, (hidden states), (attentions) | |
class XLNetForMultipleChoice(XLNetPreTrainedModel): | |
r""" | |
Inputs: | |
**input_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``: | |
Indices of input sequence tokens in the vocabulary. | |
The second dimension of the input (`num_choices`) indicates the number of choices to scores. | |
**token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``: | |
Segment token indices to indicate first and second portions of the inputs. | |
The second dimension of the input (`num_choices`) indicates the number of choices to score. | |
Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1`` | |
**attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, num_choices, sequence_length)``: | |
Mask to avoid performing attention on padding token indices. | |
The second dimension of the input (`num_choices`) indicates the number of choices to score. | |
Mask values selected in ``[0, 1]``: | |
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. | |
**head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``: | |
Mask to nullify selected heads of the self-attention modules. | |
Mask values selected in ``[0, 1]``: | |
``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**. | |
**labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: | |
Labels for computing the multiple choice classification loss. | |
Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension | |
of the input tensors. (see `input_ids` above) | |
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
Classification loss. | |
**classification_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)`` where `num_choices` is the size of the second dimension | |
of the input tensors. (see `input_ids` above). | |
Classification scores (before SoftMax). | |
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
of shape ``(batch_size, sequence_length, hidden_size)``: | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
**attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
Examples:: | |
tokenizer = XLNetTokenizer.from_pretrained('xlnet-base-cased') | |
model = XLNetForMultipleChoice.from_pretrained('xlnet-base-cased') | |
choices = ["Hello, my dog is cute", "Hello, my cat is amazing"] | |
input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices | |
labels = torch.tensor(1).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids, labels=labels) | |
loss, classification_scores = outputs[:2] | |
""" | |
def __init__(self, config): | |
super(XLNetForMultipleChoice, self).__init__(config) | |
self.transformer = XLNetModel(config) | |
self.sequence_summary = SequenceSummary(config) | |
self.logits_proj = nn.Linear(config.d_model, 1) | |
self.init_weights() | |
def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None, | |
mems=None, perm_mask=None, target_mapping=None, | |
labels=None, head_mask=None): | |
num_choices = input_ids.shape[1] | |
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) | |
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None | |
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None | |
flat_input_mask = input_mask.view(-1, input_mask.size(-1)) if input_mask is not None else None | |
transformer_outputs = self.transformer(flat_input_ids, token_type_ids=flat_token_type_ids, | |
input_mask=flat_input_mask, attention_mask=flat_attention_mask, | |
mems=mems, perm_mask=perm_mask, target_mapping=target_mapping, | |
head_mask=head_mask) | |
output = transformer_outputs[0] | |
output = self.sequence_summary(output) | |
logits = self.logits_proj(output) | |
reshaped_logits = logits.view(-1, num_choices) | |
outputs = (reshaped_logits,) + transformer_outputs[1:] # Keep mems, hidden states, attentions if there are in it | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(reshaped_logits, labels.view(-1)) | |
outputs = (loss,) + outputs | |
return outputs # return (loss), logits, mems, (hidden states), (attentions) | |
class XLNetForQuestionAnswering(XLNetPreTrainedModel): | |
r""" | |
**start_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: | |
Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). | |
Position outside of the sequence are not taken into account for computing the loss. | |
**end_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: | |
Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). | |
Position outside of the sequence are not taken into account for computing the loss. | |
**is_impossible**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: | |
Labels whether a question has an answer or no answer (SQuAD 2.0) | |
**cls_index**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: | |
Labels for position (index) of the classification token to use as input for computing plausibility of the answer. | |
**p_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``: | |
Optional mask of tokens which can't be in answers (e.g. [CLS], [PAD], ...). | |
1.0 means token should be masked. 0.0 mean token is not masked. | |
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
**loss**: (`optional`, returned if both ``start_positions`` and ``end_positions`` are provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
Classification loss as the sum of start token, end token (and is_impossible if provided) classification losses. | |
**start_top_log_probs**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided) | |
``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top)`` | |
Log probabilities for the top config.start_n_top start token possibilities (beam-search). | |
**start_top_index**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided) | |
``torch.LongTensor`` of shape ``(batch_size, config.start_n_top)`` | |
Indices for the top config.start_n_top start token possibilities (beam-search). | |
**end_top_log_probs**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided) | |
``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)`` | |
Log probabilities for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search). | |
**end_top_index**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided) | |
``torch.LongTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)`` | |
Indices for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search). | |
**cls_logits**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided) | |
``torch.FloatTensor`` of shape ``(batch_size,)`` | |
Log probabilities for the ``is_impossible`` label of the answers. | |
**mems**: | |
list of ``torch.FloatTensor`` (one for each layer): | |
that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model | |
if config.mem_len > 0 else tuple of None. Can be used to speed up sequential decoding and attend to longer context. | |
See details in the docstring of the `mems` input above. | |
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
of shape ``(batch_size, sequence_length, hidden_size)``: | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
**attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
Examples:: | |
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased') | |
model = XLMForQuestionAnswering.from_pretrained('xlnet-large-cased') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 | |
start_positions = torch.tensor([1]) | |
end_positions = torch.tensor([3]) | |
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions) | |
loss, start_scores, end_scores = outputs[:2] | |
""" | |
def __init__(self, config): | |
super(XLNetForQuestionAnswering, self).__init__(config) | |
self.start_n_top = config.start_n_top | |
self.end_n_top = config.end_n_top | |
self.transformer = XLNetModel(config) | |
self.start_logits = PoolerStartLogits(config) | |
self.end_logits = PoolerEndLogits(config) | |
self.answer_class = PoolerAnswerClass(config) | |
self.init_weights() | |
def forward(self, input_ids, attention_mask=None, mems=None, perm_mask=None, target_mapping=None, | |
token_type_ids=None, input_mask=None, head_mask=None, | |
start_positions=None, end_positions=None, is_impossible=None, cls_index=None, p_mask=None,): | |
transformer_outputs = self.transformer(input_ids, | |
attention_mask=attention_mask, | |
mems=mems, | |
perm_mask=perm_mask, | |
target_mapping=target_mapping, | |
token_type_ids=token_type_ids, | |
input_mask=input_mask, | |
head_mask=head_mask) | |
hidden_states = transformer_outputs[0] | |
start_logits = self.start_logits(hidden_states, p_mask=p_mask) | |
outputs = transformer_outputs[1:] # Keep mems, hidden states, attentions if there are in it | |
if start_positions is not None and end_positions is not None: | |
# If we are on multi-GPU, let's remove the dimension added by batch splitting | |
for x in (start_positions, end_positions, cls_index, is_impossible): | |
if x is not None and x.dim() > 1: | |
x.squeeze_(-1) | |
# during training, compute the end logits based on the ground truth of the start position | |
end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask) | |
loss_fct = CrossEntropyLoss() | |
start_loss = loss_fct(start_logits, start_positions) | |
end_loss = loss_fct(end_logits, end_positions) | |
total_loss = (start_loss + end_loss) / 2 | |
if cls_index is not None and is_impossible is not None: | |
# Predict answerability from the representation of CLS and START | |
cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index) | |
loss_fct_cls = nn.BCEWithLogitsLoss() | |
cls_loss = loss_fct_cls(cls_logits, is_impossible) | |
# note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss | |
total_loss += cls_loss * 0.5 | |
outputs = (total_loss,) + outputs | |
else: | |
# during inference, compute the end logits based on beam search | |
bsz, slen, hsz = hidden_states.size() | |
start_log_probs = F.softmax(start_logits, dim=-1) # shape (bsz, slen) | |
start_top_log_probs, start_top_index = torch.topk(start_log_probs, self.start_n_top, dim=-1) # shape (bsz, start_n_top) | |
start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) # shape (bsz, start_n_top, hsz) | |
start_states = torch.gather(hidden_states, -2, start_top_index_exp) # shape (bsz, start_n_top, hsz) | |
start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) # shape (bsz, slen, start_n_top, hsz) | |
hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(start_states) # shape (bsz, slen, start_n_top, hsz) | |
p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None | |
end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask) | |
end_log_probs = F.softmax(end_logits, dim=1) # shape (bsz, slen, start_n_top) | |
end_top_log_probs, end_top_index = torch.topk(end_log_probs, self.end_n_top, dim=1) # shape (bsz, end_n_top, start_n_top) | |
end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top) | |
end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top) | |
start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs) # get the representation of START as weighted sum of hidden states | |
cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index) # Shape (batch size,): one single `cls_logits` for each sample | |
outputs = (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits) + outputs | |
# return start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits | |
# or (if labels are provided) (total_loss,) | |
return outputs | |