Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" PyTorch DistilBERT model | |
adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM) | |
and in part from HuggingFace PyTorch version of Google AI Bert model (https://github.com/google-research/bert) | |
""" | |
from __future__ import absolute_import, division, print_function, unicode_literals | |
import json | |
import logging | |
import math | |
import copy | |
import sys | |
from io import open | |
import itertools | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from .modeling_utils import PreTrainedModel, prune_linear_layer | |
from .configuration_distilbert import DistilBertConfig | |
from .file_utils import add_start_docstrings | |
import logging | |
logger = logging.getLogger(__name__) | |
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP = { | |
'distilbert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-uncased-pytorch_model.bin", | |
'distilbert-base-uncased-distilled-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-uncased-distilled-squad-pytorch_model.bin" | |
} | |
### UTILS AND BUILDING BLOCKS OF THE ARCHITECTURE ### | |
def gelu(x): | |
return 0.5 * x * (1.0 + torch.erf(x / math.sqrt(2.0))) | |
def create_sinusoidal_embeddings(n_pos, dim, out): | |
position_enc = np.array([ | |
[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] | |
for pos in range(n_pos) | |
]) | |
out[:, 0::2] = torch.FloatTensor(np.sin(position_enc[:, 0::2])) | |
out[:, 1::2] = torch.FloatTensor(np.cos(position_enc[:, 1::2])) | |
out.detach_() | |
out.requires_grad = False | |
class Embeddings(nn.Module): | |
def __init__(self, | |
config): | |
super(Embeddings, self).__init__() | |
self.word_embeddings = nn.Embedding(config.vocab_size, config.dim, padding_idx=0) | |
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.dim) | |
if config.sinusoidal_pos_embds: | |
create_sinusoidal_embeddings(n_pos=config.max_position_embeddings, | |
dim=config.dim, | |
out=self.position_embeddings.weight) | |
self.LayerNorm = nn.LayerNorm(config.dim, eps=1e-12) | |
self.dropout = nn.Dropout(config.dropout) | |
def forward(self, input_ids): | |
""" | |
Parameters | |
---------- | |
input_ids: torch.tensor(bs, max_seq_length) | |
The token ids to embed. | |
Outputs | |
------- | |
embeddings: torch.tensor(bs, max_seq_length, dim) | |
The embedded tokens (plus position embeddings, no token_type embeddings) | |
""" | |
seq_length = input_ids.size(1) | |
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) # (max_seq_length) | |
position_ids = position_ids.unsqueeze(0).expand_as(input_ids) # (bs, max_seq_length) | |
word_embeddings = self.word_embeddings(input_ids) # (bs, max_seq_length, dim) | |
position_embeddings = self.position_embeddings(position_ids) # (bs, max_seq_length, dim) | |
embeddings = word_embeddings + position_embeddings # (bs, max_seq_length, dim) | |
embeddings = self.LayerNorm(embeddings) # (bs, max_seq_length, dim) | |
embeddings = self.dropout(embeddings) # (bs, max_seq_length, dim) | |
return embeddings | |
class MultiHeadSelfAttention(nn.Module): | |
def __init__(self, config): | |
super(MultiHeadSelfAttention, self).__init__() | |
self.n_heads = config.n_heads | |
self.dim = config.dim | |
self.dropout = nn.Dropout(p=config.attention_dropout) | |
self.output_attentions = config.output_attentions | |
assert self.dim % self.n_heads == 0 | |
self.q_lin = nn.Linear(in_features=config.dim, out_features=config.dim) | |
self.k_lin = nn.Linear(in_features=config.dim, out_features=config.dim) | |
self.v_lin = nn.Linear(in_features=config.dim, out_features=config.dim) | |
self.out_lin = nn.Linear(in_features=config.dim, out_features=config.dim) | |
self.pruned_heads = set() | |
def prune_heads(self, heads): | |
attention_head_size = self.dim // self.n_heads | |
if len(heads) == 0: | |
return | |
mask = torch.ones(self.n_heads, attention_head_size) | |
heads = set(heads) - self.pruned_heads | |
for head in heads: | |
head -= sum(1 if h < head else 0 for h in self.pruned_heads) | |
mask[head] = 0 | |
mask = mask.view(-1).contiguous().eq(1) | |
index = torch.arange(len(mask))[mask].long() | |
# Prune linear layers | |
self.q_lin = prune_linear_layer(self.q_lin, index) | |
self.k_lin = prune_linear_layer(self.k_lin, index) | |
self.v_lin = prune_linear_layer(self.v_lin, index) | |
self.out_lin = prune_linear_layer(self.out_lin, index, dim=1) | |
# Update hyper params | |
self.n_heads = self.n_heads - len(heads) | |
self.dim = attention_head_size * self.n_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def forward(self, query, key, value, mask, head_mask = None): | |
""" | |
Parameters | |
---------- | |
query: torch.tensor(bs, seq_length, dim) | |
key: torch.tensor(bs, seq_length, dim) | |
value: torch.tensor(bs, seq_length, dim) | |
mask: torch.tensor(bs, seq_length) | |
Outputs | |
------- | |
weights: torch.tensor(bs, n_heads, seq_length, seq_length) | |
Attention weights | |
context: torch.tensor(bs, seq_length, dim) | |
Contextualized layer. Optional: only if `output_attentions=True` | |
""" | |
bs, q_length, dim = query.size() | |
k_length = key.size(1) | |
# assert dim == self.dim, 'Dimensions do not match: %s input vs %s configured' % (dim, self.dim) | |
# assert key.size() == value.size() | |
dim_per_head = self.dim // self.n_heads | |
assert 2 <= mask.dim() <= 3 | |
causal = (mask.dim() == 3) | |
mask_reshp = (bs, 1, 1, k_length) | |
def shape(x): | |
""" separate heads """ | |
return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2) | |
def unshape(x): | |
""" group heads """ | |
return x.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * dim_per_head) | |
q = shape(self.q_lin(query)) # (bs, n_heads, q_length, dim_per_head) | |
k = shape(self.k_lin(key)) # (bs, n_heads, k_length, dim_per_head) | |
v = shape(self.v_lin(value)) # (bs, n_heads, k_length, dim_per_head) | |
q = q / math.sqrt(dim_per_head) # (bs, n_heads, q_length, dim_per_head) | |
scores = torch.matmul(q, k.transpose(2,3)) # (bs, n_heads, q_length, k_length) | |
mask = (mask==0).view(mask_reshp).expand_as(scores) # (bs, n_heads, q_length, k_length) | |
scores.masked_fill_(mask, -float('inf')) # (bs, n_heads, q_length, k_length) | |
weights = nn.Softmax(dim=-1)(scores) # (bs, n_heads, q_length, k_length) | |
weights = self.dropout(weights) # (bs, n_heads, q_length, k_length) | |
# Mask heads if we want to | |
if head_mask is not None: | |
weights = weights * head_mask | |
context = torch.matmul(weights, v) # (bs, n_heads, q_length, dim_per_head) | |
context = unshape(context) # (bs, q_length, dim) | |
context = self.out_lin(context) # (bs, q_length, dim) | |
if self.output_attentions: | |
return (context, weights) | |
else: | |
return (context,) | |
class FFN(nn.Module): | |
def __init__(self, config): | |
super(FFN, self).__init__() | |
self.dropout = nn.Dropout(p=config.dropout) | |
self.lin1 = nn.Linear(in_features=config.dim, out_features=config.hidden_dim) | |
self.lin2 = nn.Linear(in_features=config.hidden_dim, out_features=config.dim) | |
assert config.activation in ['relu', 'gelu'], "activation ({}) must be in ['relu', 'gelu']".format(config.activation) | |
self.activation = gelu if config.activation == 'gelu' else nn.ReLU() | |
def forward(self, input): | |
x = self.lin1(input) | |
x = self.activation(x) | |
x = self.lin2(x) | |
x = self.dropout(x) | |
return x | |
class TransformerBlock(nn.Module): | |
def __init__(self, config): | |
super(TransformerBlock, self).__init__() | |
self.n_heads = config.n_heads | |
self.dim = config.dim | |
self.hidden_dim = config.hidden_dim | |
self.dropout = nn.Dropout(p=config.dropout) | |
self.activation = config.activation | |
self.output_attentions = config.output_attentions | |
assert config.dim % config.n_heads == 0 | |
self.attention = MultiHeadSelfAttention(config) | |
self.sa_layer_norm = nn.LayerNorm(normalized_shape=config.dim, eps=1e-12) | |
self.ffn = FFN(config) | |
self.output_layer_norm = nn.LayerNorm(normalized_shape=config.dim, eps=1e-12) | |
def forward(self, x, attn_mask=None, head_mask=None): | |
""" | |
Parameters | |
---------- | |
x: torch.tensor(bs, seq_length, dim) | |
attn_mask: torch.tensor(bs, seq_length) | |
Outputs | |
------- | |
sa_weights: torch.tensor(bs, n_heads, seq_length, seq_length) | |
The attention weights | |
ffn_output: torch.tensor(bs, seq_length, dim) | |
The output of the transformer block contextualization. | |
""" | |
# Self-Attention | |
sa_output = self.attention(query=x, key=x, value=x, mask=attn_mask, head_mask=head_mask) | |
if self.output_attentions: | |
sa_output, sa_weights = sa_output # (bs, seq_length, dim), (bs, n_heads, seq_length, seq_length) | |
else: # To handle these `output_attention` or `output_hidden_states` cases returning tuples | |
assert type(sa_output) == tuple | |
sa_output = sa_output[0] | |
sa_output = self.sa_layer_norm(sa_output + x) # (bs, seq_length, dim) | |
# Feed Forward Network | |
ffn_output = self.ffn(sa_output) # (bs, seq_length, dim) | |
ffn_output = self.output_layer_norm(ffn_output + sa_output) # (bs, seq_length, dim) | |
output = (ffn_output,) | |
if self.output_attentions: | |
output = (sa_weights,) + output | |
return output | |
class Transformer(nn.Module): | |
def __init__(self, config): | |
super(Transformer, self).__init__() | |
self.n_layers = config.n_layers | |
self.output_attentions = config.output_attentions | |
self.output_hidden_states = config.output_hidden_states | |
layer = TransformerBlock(config) | |
self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.n_layers)]) | |
def forward(self, x, attn_mask=None, head_mask=None): | |
""" | |
Parameters | |
---------- | |
x: torch.tensor(bs, seq_length, dim) | |
Input sequence embedded. | |
attn_mask: torch.tensor(bs, seq_length) | |
Attention mask on the sequence. | |
Outputs | |
------- | |
hidden_state: torch.tensor(bs, seq_length, dim) | |
Sequence of hiddens states in the last (top) layer | |
all_hidden_states: Tuple[torch.tensor(bs, seq_length, dim)] | |
Tuple of length n_layers with the hidden states from each layer. | |
Optional: only if output_hidden_states=True | |
all_attentions: Tuple[torch.tensor(bs, n_heads, seq_length, seq_length)] | |
Tuple of length n_layers with the attention weights from each layer | |
Optional: only if output_attentions=True | |
""" | |
all_hidden_states = () | |
all_attentions = () | |
hidden_state = x | |
for i, layer_module in enumerate(self.layer): | |
if self.output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_state,) | |
layer_outputs = layer_module(x=hidden_state, | |
attn_mask=attn_mask, | |
head_mask=head_mask[i]) | |
hidden_state = layer_outputs[-1] | |
if self.output_attentions: | |
assert len(layer_outputs) == 2 | |
attentions = layer_outputs[0] | |
all_attentions = all_attentions + (attentions,) | |
else: | |
assert len(layer_outputs) == 1 | |
# Add last layer | |
if self.output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_state,) | |
outputs = (hidden_state,) | |
if self.output_hidden_states: | |
outputs = outputs + (all_hidden_states,) | |
if self.output_attentions: | |
outputs = outputs + (all_attentions,) | |
return outputs # last-layer hidden state, (all hidden states), (all attentions) | |
### INTERFACE FOR ENCODER AND TASK SPECIFIC MODEL ### | |
class DistilBertPreTrainedModel(PreTrainedModel): | |
""" An abstract class to handle weights initialization and | |
a simple interface for downloading and loading pretrained models. | |
""" | |
config_class = DistilBertConfig | |
pretrained_model_archive_map = DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP | |
load_tf_weights = None | |
base_model_prefix = "distilbert" | |
def __init__(self, *inputs, **kwargs): | |
super(DistilBertPreTrainedModel, self).__init__(*inputs, **kwargs) | |
def _init_weights(self, module): | |
""" Initialize the weights. | |
""" | |
if isinstance(module, nn.Embedding): | |
if module.weight.requires_grad: | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
if isinstance(module, nn.Linear) and module.bias is not None: | |
module.bias.data.zero_() | |
DISTILBERT_START_DOCSTRING = r""" | |
DistilBERT is a small, fast, cheap and light Transformer model | |
trained by distilling Bert base. It has 40% less parameters than | |
`bert-base-uncased`, runs 60% faster while preserving over 95% of | |
Bert's performances as measured on the GLUE language understanding benchmark. | |
Here are the differences between the interface of Bert and DistilBert: | |
- DistilBert doesn't have `token_type_ids`, you don't need to indicate which token belongs to which segment. Just separate your segments with the separation token `tokenizer.sep_token` (or `[SEP]`) | |
- DistilBert doesn't have options to select the input positions (`position_ids` input). This could be added if necessary though, just let's us know if you need this option. | |
For more information on DistilBERT, please refer to our | |
`detailed blog post`_ | |
.. _`detailed blog post`: | |
https://medium.com/huggingface/distilbert-8cf3380435b5 | |
Parameters: | |
config (:class:`~pytorch_transformers.DistilBertConfig`): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the configuration. | |
Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights. | |
""" | |
DISTILBERT_INPUTS_DOCSTRING = r""" | |
Inputs: | |
**input_ids** ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: | |
Indices of input sequence tokens in the vocabulary. | |
The input sequences should start with `[CLS]` and end with `[SEP]` tokens. | |
For now, ONLY BertTokenizer(`bert-base-uncased`) is supported and you should use this tokenizer when using DistilBERT. | |
**attention_mask**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: | |
Mask to avoid performing attention on padding token indices. | |
Mask values selected in ``[0, 1]``: | |
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. | |
**head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``: | |
Mask to nullify selected heads of the self-attention modules. | |
Mask values selected in ``[0, 1]``: | |
``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**. | |
""" | |
class DistilBertModel(DistilBertPreTrainedModel): | |
r""" | |
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
**last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)`` | |
Sequence of hidden-states at the output of the last layer of the model. | |
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
of shape ``(batch_size, sequence_length, hidden_size)``: | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
**attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
Examples:: | |
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') | |
model = DistilBertModel.from_pretrained('distilbert-base-uncased') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids) | |
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple | |
""" | |
def __init__(self, config): | |
super(DistilBertModel, self).__init__(config) | |
self.embeddings = Embeddings(config) # Embeddings | |
self.transformer = Transformer(config) # Encoder | |
self.init_weights() | |
def _resize_token_embeddings(self, new_num_tokens): | |
old_embeddings = self.embeddings.word_embeddings | |
new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens) | |
self.embeddings.word_embeddings = new_embeddings | |
return self.embeddings.word_embeddings | |
def _prune_heads(self, heads_to_prune): | |
""" Prunes heads of the model. | |
heads_to_prune: dict of {layer_num: list of heads to prune in this layer} | |
See base class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.transformer.layer[layer].attention.prune_heads(heads) | |
def forward(self, | |
input_ids, attention_mask=None, head_mask=None): | |
if attention_mask is None: | |
attention_mask = torch.ones_like(input_ids) # (bs, seq_length) | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
if head_mask is not None: | |
if head_mask.dim() == 1: | |
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) | |
head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1) | |
elif head_mask.dim() == 2: | |
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer | |
head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility | |
else: | |
head_mask = [None] * self.config.num_hidden_layers | |
embedding_output = self.embeddings(input_ids) # (bs, seq_length, dim) | |
tfmr_output = self.transformer(x=embedding_output, | |
attn_mask=attention_mask, | |
head_mask=head_mask) | |
hidden_state = tfmr_output[0] | |
output = (hidden_state, ) + tfmr_output[1:] | |
return output # last-layer hidden-state, (all hidden_states), (all attentions) | |
class DistilBertForMaskedLM(DistilBertPreTrainedModel): | |
r""" | |
**masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: | |
Labels for computing the masked language modeling loss. | |
Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) | |
Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels | |
in ``[0, ..., config.vocab_size]`` | |
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
**loss**: (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
Masked language modeling loss. | |
**prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)`` | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
of shape ``(batch_size, sequence_length, hidden_size)``: | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
**attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
Examples:: | |
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') | |
model = DistilBertForMaskedLM.from_pretrained('distilbert-base-uncased') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids, masked_lm_labels=input_ids) | |
loss, prediction_scores = outputs[:2] | |
""" | |
def __init__(self, config): | |
super(DistilBertForMaskedLM, self).__init__(config) | |
self.output_attentions = config.output_attentions | |
self.output_hidden_states = config.output_hidden_states | |
self.distilbert = DistilBertModel(config) | |
self.vocab_transform = nn.Linear(config.dim, config.dim) | |
self.vocab_layer_norm = nn.LayerNorm(config.dim, eps=1e-12) | |
self.vocab_projector = nn.Linear(config.dim, config.vocab_size) | |
self.init_weights() | |
self.tie_weights() | |
self.mlm_loss_fct = nn.CrossEntropyLoss(ignore_index=-1) | |
def tie_weights(self): | |
""" Make sure we are sharing the input and output embeddings. | |
Export to TorchScript can't handle parameter sharing so we are cloning them instead. | |
""" | |
self._tie_or_clone_weights(self.vocab_projector, | |
self.distilbert.embeddings.word_embeddings) | |
def forward(self, input_ids, attention_mask=None, head_mask=None, masked_lm_labels=None): | |
dlbrt_output = self.distilbert(input_ids=input_ids, | |
attention_mask=attention_mask, | |
head_mask=head_mask) | |
hidden_states = dlbrt_output[0] # (bs, seq_length, dim) | |
prediction_logits = self.vocab_transform(hidden_states) # (bs, seq_length, dim) | |
prediction_logits = gelu(prediction_logits) # (bs, seq_length, dim) | |
prediction_logits = self.vocab_layer_norm(prediction_logits) # (bs, seq_length, dim) | |
prediction_logits = self.vocab_projector(prediction_logits) # (bs, seq_length, vocab_size) | |
outputs = (prediction_logits, ) + dlbrt_output[1:] | |
if masked_lm_labels is not None: | |
mlm_loss = self.mlm_loss_fct(prediction_logits.view(-1, prediction_logits.size(-1)), | |
masked_lm_labels.view(-1)) | |
outputs = (mlm_loss,) + outputs | |
return outputs # (mlm_loss), prediction_logits, (all hidden_states), (all attentions) | |
class DistilBertForSequenceClassification(DistilBertPreTrainedModel): | |
r""" | |
**labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: | |
Labels for computing the sequence classification/regression loss. | |
Indices should be in ``[0, ..., config.num_labels - 1]``. | |
If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss), | |
If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy). | |
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
Classification (or regression if config.num_labels==1) loss. | |
**logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)`` | |
Classification (or regression if config.num_labels==1) scores (before SoftMax). | |
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
of shape ``(batch_size, sequence_length, hidden_size)``: | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
**attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
Examples:: | |
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') | |
model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 | |
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids, labels=labels) | |
loss, logits = outputs[:2] | |
""" | |
def __init__(self, config): | |
super(DistilBertForSequenceClassification, self).__init__(config) | |
self.num_labels = config.num_labels | |
self.distilbert = DistilBertModel(config) | |
self.pre_classifier = nn.Linear(config.dim, config.dim) | |
self.classifier = nn.Linear(config.dim, config.num_labels) | |
self.dropout = nn.Dropout(config.seq_classif_dropout) | |
self.init_weights() | |
def forward(self, input_ids, attention_mask=None, head_mask=None, labels=None): | |
distilbert_output = self.distilbert(input_ids=input_ids, | |
attention_mask=attention_mask, | |
head_mask=head_mask) | |
hidden_state = distilbert_output[0] # (bs, seq_len, dim) | |
pooled_output = hidden_state[:, 0] # (bs, dim) | |
pooled_output = self.pre_classifier(pooled_output) # (bs, dim) | |
pooled_output = nn.ReLU()(pooled_output) # (bs, dim) | |
pooled_output = self.dropout(pooled_output) # (bs, dim) | |
logits = self.classifier(pooled_output) # (bs, dim) | |
outputs = (logits,) + distilbert_output[1:] | |
if labels is not None: | |
if self.num_labels == 1: | |
loss_fct = nn.MSELoss() | |
loss = loss_fct(logits.view(-1), labels.view(-1)) | |
else: | |
loss_fct = nn.CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
outputs = (loss,) + outputs | |
return outputs # (loss), logits, (hidden_states), (attentions) | |
class DistilBertForQuestionAnswering(DistilBertPreTrainedModel): | |
r""" | |
**start_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: | |
Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). | |
Position outside of the sequence are not taken into account for computing the loss. | |
**end_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: | |
Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). | |
Position outside of the sequence are not taken into account for computing the loss. | |
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. | |
**start_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)`` | |
Span-start scores (before SoftMax). | |
**end_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)`` | |
Span-end scores (before SoftMax). | |
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
of shape ``(batch_size, sequence_length, hidden_size)``: | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
**attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
Examples:: | |
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') | |
model = DistilBertForQuestionAnswering.from_pretrained('distilbert-base-uncased') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 | |
start_positions = torch.tensor([1]) | |
end_positions = torch.tensor([3]) | |
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions) | |
loss, start_scores, end_scores = outputs[:2] | |
""" | |
def __init__(self, config): | |
super(DistilBertForQuestionAnswering, self).__init__(config) | |
self.distilbert = DistilBertModel(config) | |
self.qa_outputs = nn.Linear(config.dim, config.num_labels) | |
assert config.num_labels == 2 | |
self.dropout = nn.Dropout(config.qa_dropout) | |
self.init_weights() | |
def forward(self, input_ids, attention_mask=None, head_mask=None, start_positions=None, end_positions=None): | |
distilbert_output = self.distilbert(input_ids=input_ids, | |
attention_mask=attention_mask, | |
head_mask=head_mask) | |
hidden_states = distilbert_output[0] # (bs, max_query_len, dim) | |
hidden_states = self.dropout(hidden_states) # (bs, max_query_len, dim) | |
logits = self.qa_outputs(hidden_states) # (bs, max_query_len, 2) | |
start_logits, end_logits = logits.split(1, dim=-1) | |
start_logits = start_logits.squeeze(-1) # (bs, max_query_len) | |
end_logits = end_logits.squeeze(-1) # (bs, max_query_len) | |
outputs = (start_logits, end_logits,) + distilbert_output[1:] | |
if start_positions is not None and end_positions is not None: | |
# If we are on multi-GPU, split add a dimension | |
if len(start_positions.size()) > 1: | |
start_positions = start_positions.squeeze(-1) | |
if len(end_positions.size()) > 1: | |
end_positions = end_positions.squeeze(-1) | |
# sometimes the start/end positions are outside our model inputs, we ignore these terms | |
ignored_index = start_logits.size(1) | |
start_positions.clamp_(0, ignored_index) | |
end_positions.clamp_(0, ignored_index) | |
loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index) | |
start_loss = loss_fct(start_logits, start_positions) | |
end_loss = loss_fct(end_logits, end_positions) | |
total_loss = (start_loss + end_loss) / 2 | |
outputs = (total_loss,) + outputs | |
return outputs # (loss), start_logits, end_logits, (hidden_states), (attentions) | |