Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" XLNet configuration """ | |
from __future__ import absolute_import, division, print_function, unicode_literals | |
import json | |
import logging | |
import sys | |
from io import open | |
from .configuration_utils import PretrainedConfig | |
logger = logging.getLogger(__name__) | |
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
'xlnet-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-base-cased-config.json", | |
'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-config.json", | |
} | |
class XLNetConfig(PretrainedConfig): | |
"""Configuration class to store the configuration of a ``XLNetModel``. | |
Args: | |
vocab_size_or_config_json_file: Vocabulary size of ``inputs_ids`` in ``XLNetModel``. | |
d_model: Size of the encoder layers and the pooler layer. | |
n_layer: Number of hidden layers in the Transformer encoder. | |
n_head: Number of attention heads for each attention layer in | |
the Transformer encoder. | |
d_inner: The size of the "intermediate" (i.e., feed-forward) | |
layer in the Transformer encoder. | |
ff_activation: The non-linear activation function (function or string) in the | |
encoder and pooler. If string, "gelu", "relu" and "swish" are supported. | |
untie_r: untie relative position biases | |
attn_type: 'bi' for XLNet, 'uni' for Transformer-XL | |
dropout: The dropout probabilitiy for all fully connected | |
layers in the embeddings, encoder, and pooler. | |
dropatt: The dropout ratio for the attention | |
probabilities. | |
initializer_range: The sttdev of the truncated_normal_initializer for | |
initializing all weight matrices. | |
layer_norm_eps: The epsilon used by LayerNorm. | |
dropout: float, dropout rate. | |
dropatt: float, dropout rate on attention probabilities. | |
init: str, the initialization scheme, either "normal" or "uniform". | |
init_range: float, initialize the parameters with a uniform distribution | |
in [-init_range, init_range]. Only effective when init="uniform". | |
init_std: float, initialize the parameters with a normal distribution | |
with mean 0 and stddev init_std. Only effective when init="normal". | |
mem_len: int, the number of tokens to cache. | |
reuse_len: int, the number of tokens in the currect batch to be cached | |
and reused in the future. | |
bi_data: bool, whether to use bidirectional input pipeline. | |
Usually set to True during pretraining and False during finetuning. | |
clamp_len: int, clamp all relative distances larger than clamp_len. | |
-1 means no clamping. | |
same_length: bool, whether to use the same attention length for each token. | |
finetuning_task: name of the glue task on which the model was fine-tuned if any | |
""" | |
pretrained_config_archive_map = XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP | |
def __init__(self, | |
vocab_size_or_config_json_file=32000, | |
d_model=1024, | |
n_layer=24, | |
n_head=16, | |
d_inner=4096, | |
ff_activation="gelu", | |
untie_r=True, | |
attn_type="bi", | |
initializer_range=0.02, | |
layer_norm_eps=1e-12, | |
dropout=0.1, | |
mem_len=None, | |
reuse_len=None, | |
bi_data=False, | |
clamp_len=-1, | |
same_length=False, | |
finetuning_task=None, | |
num_labels=2, | |
summary_type='last', | |
summary_use_proj=True, | |
summary_activation='tanh', | |
summary_last_dropout=0.1, | |
start_n_top=5, | |
end_n_top=5, | |
**kwargs): | |
"""Constructs XLNetConfig. | |
""" | |
super(XLNetConfig, self).__init__(**kwargs) | |
if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2 | |
and isinstance(vocab_size_or_config_json_file, unicode)): | |
with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader: | |
json_config = json.loads(reader.read()) | |
for key, value in json_config.items(): | |
self.__dict__[key] = value | |
elif isinstance(vocab_size_or_config_json_file, int): | |
self.n_token = vocab_size_or_config_json_file | |
self.d_model = d_model | |
self.n_layer = n_layer | |
self.n_head = n_head | |
assert d_model % n_head == 0 | |
self.d_head = d_model // n_head | |
self.ff_activation = ff_activation | |
self.d_inner = d_inner | |
self.untie_r = untie_r | |
self.attn_type = attn_type | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
self.dropout = dropout | |
self.mem_len = mem_len | |
self.reuse_len = reuse_len | |
self.bi_data = bi_data | |
self.clamp_len = clamp_len | |
self.same_length = same_length | |
self.finetuning_task = finetuning_task | |
self.num_labels = num_labels | |
self.summary_type = summary_type | |
self.summary_use_proj = summary_use_proj | |
self.summary_activation = summary_activation | |
self.summary_last_dropout = summary_last_dropout | |
self.start_n_top = start_n_top | |
self.end_n_top = end_n_top | |
else: | |
raise ValueError("First argument must be either a vocabulary size (int)" | |
" or the path to a pretrained model config file (str)") | |
def max_position_embeddings(self): | |
return -1 | |
def vocab_size(self): | |
return self.n_token | |
def vocab_size(self, value): | |
self.n_token = value | |
def hidden_size(self): | |
return self.d_model | |
def num_attention_heads(self): | |
return self.n_head | |
def num_hidden_layers(self): | |
return self.n_layer | |