Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" BERT multiple choice fine-tuning: utilities to work with multiple choice tasks of reading comprehension """ | |
from __future__ import absolute_import, division, print_function | |
import logging | |
import os | |
import sys | |
from io import open | |
import json | |
import csv | |
import glob | |
import tqdm | |
logger = logging.getLogger(__name__) | |
class InputExample(object): | |
"""A single training/test example for multiple choice""" | |
def __init__(self, example_id, question, contexts, endings, label=None): | |
"""Constructs a InputExample. | |
Args: | |
example_id: Unique id for the example. | |
contexts: list of str. The untokenized text of the first sequence (context of corresponding question). | |
question: string. The untokenized text of the second sequence (qustion). | |
endings: list of str. multiple choice's options. Its length must be equal to contexts' length. | |
label: (Optional) string. The label of the example. This should be | |
specified for train and dev examples, but not for test examples. | |
""" | |
self.example_id = example_id | |
self.question = question | |
self.contexts = contexts | |
self.endings = endings | |
self.label = label | |
class InputFeatures(object): | |
def __init__(self, | |
example_id, | |
choices_features, | |
label | |
): | |
self.example_id = example_id | |
self.choices_features = [ | |
{ | |
'input_ids': input_ids, | |
'input_mask': input_mask, | |
'segment_ids': segment_ids | |
} | |
for _, input_ids, input_mask, segment_ids in choices_features | |
] | |
self.label = label | |
class DataProcessor(object): | |
"""Base class for data converters for multiple choice data sets.""" | |
def get_train_examples(self, data_dir): | |
"""Gets a collection of `InputExample`s for the train set.""" | |
raise NotImplementedError() | |
def get_dev_examples(self, data_dir): | |
"""Gets a collection of `InputExample`s for the dev set.""" | |
raise NotImplementedError() | |
def get_test_examples(self, data_dir): | |
"""Gets a collection of `InputExample`s for the test set.""" | |
raise NotImplementedError() | |
def get_labels(self): | |
"""Gets the list of labels for this data set.""" | |
raise NotImplementedError() | |
class RaceProcessor(DataProcessor): | |
"""Processor for the RACE data set.""" | |
def get_train_examples(self, data_dir): | |
"""See base class.""" | |
logger.info("LOOKING AT {} train".format(data_dir)) | |
high = os.path.join(data_dir, 'train/high') | |
middle = os.path.join(data_dir, 'train/middle') | |
high = self._read_txt(high) | |
middle = self._read_txt(middle) | |
return self._create_examples(high + middle, 'train') | |
def get_dev_examples(self, data_dir): | |
"""See base class.""" | |
logger.info("LOOKING AT {} dev".format(data_dir)) | |
high = os.path.join(data_dir, 'dev/high') | |
middle = os.path.join(data_dir, 'dev/middle') | |
high = self._read_txt(high) | |
middle = self._read_txt(middle) | |
return self._create_examples(high + middle, 'dev') | |
def get_test_examples(self, data_dir): | |
"""See base class.""" | |
logger.info("LOOKING AT {} test".format(data_dir)) | |
high = os.path.join(data_dir, 'test/high') | |
middle = os.path.join(data_dir, 'test/middle') | |
high = self._read_txt(high) | |
middle = self._read_txt(middle) | |
return self._create_examples(high + middle, 'test') | |
def get_labels(self): | |
"""See base class.""" | |
return ["0", "1", "2", "3"] | |
def _read_txt(self, input_dir): | |
lines = [] | |
files = glob.glob(input_dir + "/*txt") | |
for file in tqdm.tqdm(files, desc="read files"): | |
with open(file, 'r', encoding='utf-8') as fin: | |
data_raw = json.load(fin) | |
data_raw["race_id"] = file | |
lines.append(data_raw) | |
return lines | |
def _create_examples(self, lines, set_type): | |
"""Creates examples for the training and dev sets.""" | |
examples = [] | |
for (_, data_raw) in enumerate(lines): | |
race_id = "%s-%s" % (set_type, data_raw["race_id"]) | |
article = data_raw["article"] | |
for i in range(len(data_raw["answers"])): | |
truth = str(ord(data_raw['answers'][i]) - ord('A')) | |
question = data_raw['questions'][i] | |
options = data_raw['options'][i] | |
examples.append( | |
InputExample( | |
example_id=race_id, | |
question=question, | |
contexts=[article, article, article, article], # this is not efficient but convenient | |
endings=[options[0], options[1], options[2], options[3]], | |
label=truth)) | |
return examples | |
class SwagProcessor(DataProcessor): | |
"""Processor for the SWAG data set.""" | |
def get_train_examples(self, data_dir): | |
"""See base class.""" | |
logger.info("LOOKING AT {} train".format(data_dir)) | |
return self._create_examples(self._read_csv(os.path.join(data_dir, "train.csv")), "train") | |
def get_dev_examples(self, data_dir): | |
"""See base class.""" | |
logger.info("LOOKING AT {} dev".format(data_dir)) | |
return self._create_examples(self._read_csv(os.path.join(data_dir, "val.csv")), "dev") | |
def get_test_examples(self, data_dir): | |
"""See base class.""" | |
logger.info("LOOKING AT {} dev".format(data_dir)) | |
raise ValueError( | |
"For swag testing, the input file does not contain a label column. It can not be tested in current code" | |
"setting!" | |
) | |
return self._create_examples(self._read_csv(os.path.join(data_dir, "test.csv")), "test") | |
def get_labels(self): | |
"""See base class.""" | |
return ["0", "1", "2", "3"] | |
def _read_csv(self, input_file): | |
with open(input_file, 'r', encoding='utf-8') as f: | |
reader = csv.reader(f) | |
lines = [] | |
for line in reader: | |
if sys.version_info[0] == 2: | |
line = list(unicode(cell, 'utf-8') for cell in line) | |
lines.append(line) | |
return lines | |
def _create_examples(self, lines, type): | |
"""Creates examples for the training and dev sets.""" | |
if type == "train" and lines[0][-1] != 'label': | |
raise ValueError( | |
"For training, the input file must contain a label column." | |
) | |
examples = [ | |
InputExample( | |
example_id=line[2], | |
question=line[5], # in the swag dataset, the | |
# common beginning of each | |
# choice is stored in "sent2". | |
contexts = [line[4], line[4], line[4], line[4]], | |
endings = [line[7], line[8], line[9], line[10]], | |
label=line[11] | |
) for line in lines[1:] # we skip the line with the column names | |
] | |
return examples | |
class ArcProcessor(DataProcessor): | |
"""Processor for the ARC data set (request from allennlp).""" | |
def get_train_examples(self, data_dir): | |
"""See base class.""" | |
logger.info("LOOKING AT {} train".format(data_dir)) | |
return self._create_examples(self._read_json(os.path.join(data_dir, "train.jsonl")), "train") | |
def get_dev_examples(self, data_dir): | |
"""See base class.""" | |
logger.info("LOOKING AT {} dev".format(data_dir)) | |
return self._create_examples(self._read_json(os.path.join(data_dir, "dev.jsonl")), "dev") | |
def get_test_examples(self, data_dir): | |
logger.info("LOOKING AT {} test".format(data_dir)) | |
return self._create_examples(self._read_json(os.path.join(data_dir, "test.jsonl")), "test") | |
def get_labels(self): | |
"""See base class.""" | |
return ["0", "1", "2", "3"] | |
def _read_json(self, input_file): | |
with open(input_file, 'r', encoding='utf-8') as fin: | |
lines = fin.readlines() | |
return lines | |
def _create_examples(self, lines, type): | |
"""Creates examples for the training and dev sets.""" | |
#There are two types of labels. They should be normalized | |
def normalize(truth): | |
if truth in "ABCD": | |
return ord(truth) - ord("A") | |
elif truth in "1234": | |
return int(truth) - 1 | |
else: | |
logger.info("truth ERROR! %s", str(truth)) | |
return None | |
examples = [] | |
three_choice = 0 | |
four_choice = 0 | |
five_choice = 0 | |
other_choices = 0 | |
# we deleted example which has more than or less than four choices | |
for line in tqdm.tqdm(lines, desc="read arc data"): | |
data_raw = json.loads(line.strip("\n")) | |
if len(data_raw["question"]["choices"]) == 3: | |
three_choice += 1 | |
continue | |
elif len(data_raw["question"]["choices"]) == 5: | |
five_choice += 1 | |
continue | |
elif len(data_raw["question"]["choices"]) != 4: | |
other_choices += 1 | |
continue | |
four_choice += 1 | |
truth = str(normalize(data_raw["answerKey"])) | |
assert truth != "None" | |
question_choices = data_raw["question"] | |
question = question_choices["stem"] | |
id = data_raw["id"] | |
options = question_choices["choices"] | |
if len(options) == 4: | |
examples.append( | |
InputExample( | |
example_id = id, | |
question=question, | |
contexts=[options[0]["para"].replace("_", ""), options[1]["para"].replace("_", ""), | |
options[2]["para"].replace("_", ""), options[3]["para"].replace("_", "")], | |
endings=[options[0]["text"], options[1]["text"], options[2]["text"], options[3]["text"]], | |
label=truth)) | |
if type == "train": | |
assert len(examples) > 1 | |
assert examples[0].label is not None | |
logger.info("len examples: %s}", str(len(examples))) | |
logger.info("Three choices: %s", str(three_choice)) | |
logger.info("Five choices: %s", str(five_choice)) | |
logger.info("Other choices: %s", str(other_choices)) | |
logger.info("four choices: %s", str(four_choice)) | |
return examples | |
def convert_examples_to_features(examples, label_list, max_seq_length, | |
tokenizer, | |
cls_token_at_end=False, | |
cls_token='[CLS]', | |
cls_token_segment_id=1, | |
sep_token='[SEP]', | |
sequence_a_segment_id=0, | |
sequence_b_segment_id=1, | |
sep_token_extra=False, | |
pad_token_segment_id=0, | |
pad_on_left=False, | |
pad_token=0, | |
mask_padding_with_zero=True): | |
""" Loads a data file into a list of `InputBatch`s | |
`cls_token_at_end` define the location of the CLS token: | |
- False (Default, BERT/XLM pattern): [CLS] + A + [SEP] + B + [SEP] | |
- True (XLNet/GPT pattern): A + [SEP] + B + [SEP] + [CLS] | |
`cls_token_segment_id` define the segment id associated to the CLS token (0 for BERT, 2 for XLNet) | |
""" | |
label_map = {label : i for i, label in enumerate(label_list)} | |
features = [] | |
for (ex_index, example) in tqdm.tqdm(enumerate(examples), desc="convert examples to features"): | |
if ex_index % 10000 == 0: | |
logger.info("Writing example %d of %d" % (ex_index, len(examples))) | |
choices_features = [] | |
for ending_idx, (context, ending) in enumerate(zip(example.contexts, example.endings)): | |
tokens_a = tokenizer.tokenize(context) | |
tokens_b = None | |
if example.question.find("_") != -1: | |
#this is for cloze question | |
tokens_b = tokenizer.tokenize(example.question.replace("_", ending)) | |
else: | |
tokens_b = tokenizer.tokenize(example.question + " " + ending) | |
# you can add seq token between quesiotn and ending. This does not make too much difference. | |
# tokens_b = tokenizer.tokenize(example.question) | |
# tokens_b += [sep_token] | |
# if sep_token_extra: | |
# tokens_b += [sep_token] | |
# tokens_b += tokenizer.tokenize(ending) | |
special_tokens_count = 4 if sep_token_extra else 3 | |
_truncate_seq_pair(tokens_a, tokens_b, max_seq_length - special_tokens_count) | |
# The convention in BERT is: | |
# (a) For sequence pairs: | |
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] | |
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 | |
# (b) For single sequences: | |
# tokens: [CLS] the dog is hairy . [SEP] | |
# type_ids: 0 0 0 0 0 0 0 | |
# | |
# Where "type_ids" are used to indicate whether this is the first | |
# sequence or the second sequence. The embedding vectors for `type=0` and | |
# `type=1` were learned during pre-training and are added to the wordpiece | |
# embedding vector (and position vector). This is not *strictly* necessary | |
# since the [SEP] token unambiguously separates the sequences, but it makes | |
# it easier for the model to learn the concept of sequences. | |
# | |
# For classification tasks, the first vector (corresponding to [CLS]) is | |
# used as as the "sentence vector". Note that this only makes sense because | |
# the entire model is fine-tuned. | |
tokens = tokens_a + [sep_token] | |
if sep_token_extra: | |
# roberta uses an extra separator b/w pairs of sentences | |
tokens += [sep_token] | |
segment_ids = [sequence_a_segment_id] * len(tokens) | |
if tokens_b: | |
tokens += tokens_b + [sep_token] | |
segment_ids += [sequence_b_segment_id] * (len(tokens_b) + 1) | |
if cls_token_at_end: | |
tokens = tokens + [cls_token] | |
segment_ids = segment_ids + [cls_token_segment_id] | |
else: | |
tokens = [cls_token] + tokens | |
segment_ids = [cls_token_segment_id] + segment_ids | |
input_ids = tokenizer.convert_tokens_to_ids(tokens) | |
# The mask has 1 for real tokens and 0 for padding tokens. Only real | |
# tokens are attended to. | |
input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) | |
# Zero-pad up to the sequence length. | |
padding_length = max_seq_length - len(input_ids) | |
if pad_on_left: | |
input_ids = ([pad_token] * padding_length) + input_ids | |
input_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask | |
segment_ids = ([pad_token_segment_id] * padding_length) + segment_ids | |
else: | |
input_ids = input_ids + ([pad_token] * padding_length) | |
input_mask = input_mask + ([0 if mask_padding_with_zero else 1] * padding_length) | |
segment_ids = segment_ids + ([pad_token_segment_id] * padding_length) | |
assert len(input_ids) == max_seq_length | |
assert len(input_mask) == max_seq_length | |
assert len(segment_ids) == max_seq_length | |
choices_features.append((tokens, input_ids, input_mask, segment_ids)) | |
label = label_map[example.label] | |
if ex_index < 2: | |
logger.info("*** Example ***") | |
logger.info("race_id: {}".format(example.example_id)) | |
for choice_idx, (tokens, input_ids, input_mask, segment_ids) in enumerate(choices_features): | |
logger.info("choice: {}".format(choice_idx)) | |
logger.info("tokens: {}".format(' '.join(tokens))) | |
logger.info("input_ids: {}".format(' '.join(map(str, input_ids)))) | |
logger.info("input_mask: {}".format(' '.join(map(str, input_mask)))) | |
logger.info("segment_ids: {}".format(' '.join(map(str, segment_ids)))) | |
logger.info("label: {}".format(label)) | |
features.append( | |
InputFeatures( | |
example_id = example.example_id, | |
choices_features = choices_features, | |
label = label | |
) | |
) | |
return features | |
def _truncate_seq_pair(tokens_a, tokens_b, max_length): | |
"""Truncates a sequence pair in place to the maximum length.""" | |
# This is a simple heuristic which will always truncate the longer sequence | |
# one token at a time. This makes more sense than truncating an equal percent | |
# of tokens from each, since if one sequence is very short then each token | |
# that's truncated likely contains more information than a longer sequence. | |
# However, since we'd better not to remove tokens of options and questions, you can choose to use a bigger | |
# length or only pop from context | |
while True: | |
total_length = len(tokens_a) + len(tokens_b) | |
if total_length <= max_length: | |
break | |
if len(tokens_a) > len(tokens_b): | |
tokens_a.pop() | |
else: | |
logger.info('Attention! you are removing from token_b (swag task is ok). ' | |
'If you are training ARC and RACE (you are poping question + options), ' | |
'you need to try to use a bigger max seq length!') | |
tokens_b.pop() | |
processors = { | |
"race": RaceProcessor, | |
"swag": SwagProcessor, | |
"arc": ArcProcessor | |
} | |
GLUE_TASKS_NUM_LABELS = { | |
"race", 4, | |
"swag", 4, | |
"arc", 4 | |
} | |