Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa). | |
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned | |
using a masked language modeling (MLM) loss. | |
""" | |
from __future__ import absolute_import, division, print_function | |
import pdb | |
import argparse | |
import glob | |
import logging | |
import os | |
import pickle | |
import random | |
import torch.nn.functional as F | |
import numpy as np | |
import torch | |
from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler, TensorDataset | |
from torch.utils.data.distributed import DistributedSampler | |
from tensorboardX import SummaryWriter | |
from tqdm import tqdm, trange | |
from collections import defaultdict | |
from sklearn.metrics.pairwise import cosine_similarity, euclidean_distances | |
from sklearn import manifold | |
import matplotlib.pyplot as plt | |
# from azure.cosmosdb.table.tableservice import TableService | |
# from azure.cosmosdb.table.models import Entity | |
from datetime import datetime | |
# import sys | |
# sys.path.append('./') | |
# cwd = os.getcwd() | |
# pt_path = os.path.join( cwd[:-4], 'pytorch_transformers') | |
# sys.path.append(pt_path) | |
# print(f"Pytorch Transformer {pt_path}") | |
from pytorch_transformers import (WEIGHTS_NAME, AdamW, WarmupLinearSchedule, | |
BertConfig, BertForLatentConnector, BertTokenizer, | |
GPT2Config, GPT2ForLatentConnector, GPT2Tokenizer, | |
OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer, | |
RobertaConfig, RobertaForMaskedLM, RobertaTokenizer) | |
from utils import (calc_iwnll, calc_mi, calc_au, Dialog_BucketingDataLoader, TextDataset_Split, TextDataset_2Tokenizers, frange_cycle_linear, frange_cycle_zero_linear) | |
from modules import SpaceFusion | |
from eval_dialog_response import eval_dialog_response | |
from eval_dialog_multi_response import eval_multi_ref | |
# logging.getLogger("azure").setLevel(logging.WARNING) | |
# logging.getLogger("TableService").setLevel(logging.WARNING) | |
logger = logging.getLogger(__name__) | |
MODEL_CLASSES = { | |
'gpt2': (GPT2Config, GPT2ForLatentConnector, GPT2Tokenizer), | |
'openai-gpt': (OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer), | |
'bert': (BertConfig, BertForLatentConnector, BertTokenizer), | |
'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer) | |
} | |
storage_name="textae" | |
key=r"6yBCXlblof8DVFJ4BD3eNFTrGQCej6cKfCf5z308cKnevyHaG+yl/m+ITVErB9yt0kvN3ToqxLIh0knJEfFmPA==" | |
# ts = TableService(account_name=storage_name, account_key=key) | |
def build_dataload_and_cache_examples(args, tokenizer, evaluate=False): | |
if isinstance(tokenizer, list): | |
if not evaluate: | |
args.batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) | |
file_path=args.train_data_file | |
use_shuffle = True | |
bucket_size = 100 | |
else: | |
args.batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) | |
file_path=args.eval_data_file | |
use_shuffle = False | |
bucket_size = 1 | |
dataloader = Dialog_BucketingDataLoader(file_path, args.batch_size, args.max_seq_length, tokenizer, args, bucket=bucket_size, shuffle=use_shuffle) | |
else: | |
pass | |
return dataloader | |
def set_seed(args): | |
random.seed(args.seed) | |
np.random.seed(args.seed) | |
torch.manual_seed(args.seed) | |
if args.n_gpu > 0: | |
torch.cuda.manual_seed_all(args.seed) | |
def dist_mat(x): | |
return euclidean_distances(x, x) | |
#return cosine_similarity(x, x) | |
def euc_dist_mat(x): | |
n = x.shape[0] | |
mat = np.zeros((n, n)) | |
for i in range(n): | |
for j in range(i + 1, n): | |
d = np.sqrt(np.sum(np.power(x[i, :] - x[j, :], 2))) | |
mat[i, j] = d | |
mat[j, i] = d | |
return mat | |
def visual2D(args, model_sf, inputs_src, inputs_tgt, n=200, method='MDS', path_prefix='vis_'): | |
print('>'*10 + ' calculating z, n=%i'%n) | |
model_sf.eval() | |
with torch.no_grad(): | |
z_AE, z_S2S = model_sf(inputs_src[:n,:], inputs_tgt[:n,:], None, return_vec=True) | |
z = torch.cat([z_AE, z_S2S], dim=0) | |
latent = z.cpu().detach().numpy() | |
labels = ['AE','S2S'] | |
colors = { | |
'AE': 'r', | |
'S2S': 'b', | |
} | |
print('>'*10 + ' calculating dist mat') | |
# https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html | |
cmap = 'bwr' #, True:'hot'}#cubehelix'#'gnuplot2'# | |
dmat = dist_mat(latent) | |
suffix = '_dist.png' | |
f, ax = plt.subplots(figsize=(3*len(labels),2*len(labels))) | |
cax = ax.imshow(dmat, cmap=cmap) | |
f.colorbar(cax) | |
""" | |
ticks = [] | |
ticklabels = [] | |
n_prev = 0 | |
for i in range(n_labels): | |
ticks.append(n_prev + n/2) | |
ticklabels.append(labels[i]+'\n') | |
ticks.append(n_prev + n) | |
ticklabels.append('%i'%(n * (i+1))) | |
n_prev = n_prev + n | |
ax.set_xticks(ticks) | |
ax.set_xticklabels(ticklabels) | |
ax.xaxis.tick_top() | |
ax.set_yticks(ticks) | |
ax.set_yticklabels([s.strip('\n') for s in ticklabels]) | |
""" | |
path_prefix = os.path.join(args.output_dir, path_prefix) | |
plt.savefig(path_prefix + suffix) | |
plt.close() | |
print('>'*10 + ' runnning %s'%method) | |
if method == 'tSNE': | |
approx = manifold.TSNE(init='pca', verbose=1).fit_transform(latent) | |
elif method == 'MDS': | |
approx = manifold.MDS(2, verbose=1, max_iter=500, n_init=1).fit_transform(latent) | |
elif method == 'isomap': | |
approx = manifold.Isomap().fit_transform(latent) | |
else: | |
raise ValueError | |
f, ax = plt.subplots() | |
for k in labels: | |
ax.plot(np.nan, np.nan, colors[k] + '.', label=k) | |
i0 = 0 | |
for k in labels: | |
i1 = i0 + n | |
ax.plot(approx[i0:i1, 0], approx[i0:i1, 1], colors[k]+'.', alpha=0.5) | |
i0 = i1 | |
plt.legend(loc='best') | |
plt.savefig(path_prefix+'_%s.png'%method) | |
def train(args, train_dataloader, model_sf, encoder_tokenizer, decoder_tokenizer, table_name): | |
""" Train the model """ | |
if args.local_rank in [-1, 0]: | |
tb_writer = SummaryWriter() | |
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) | |
# train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) | |
# train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) | |
if args.max_steps > 0: | |
t_total = args.max_steps | |
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 | |
else: | |
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs | |
# Prepare optimizer and schedule (linear warmup and decay) | |
# model_encoder, model_decoder, model_connector = model_sf.encoder, model_sf.decoder, model_sf.linear | |
no_decay = ['bias', 'LayerNorm.weight'] | |
optimizer_grouped_parameters = [ | |
{'params': [p for n, p in model_sf.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay}, | |
{'params': [p for n, p in model_sf.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} | |
] | |
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) | |
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total) | |
if args.fp16: | |
try: | |
from apex import amp | |
except ImportError: | |
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") | |
model_sf, optimizer = amp.initialize(model_sf, optimizer, opt_level=args.fp16_opt_level) | |
# multi-gpu training (should be after apex fp16 initialization) | |
if args.n_gpu > 1: | |
model_sf = torch.nn.DataParallel(model_sf, device_ids=range(args.n_gpu)).to(args.device) | |
# Distributed training (should be after apex fp16 initialization) | |
if args.local_rank != -1: | |
model_sf = torch.nn.parallel.DistributedDataParallel(model_sf, device_ids=[args.local_rank], | |
output_device=args.local_rank, | |
find_unused_parameters=True) | |
# Train! | |
logger.info("***** Running training *****") | |
logger.info(" Num examples = %d", train_dataloader.num_examples) | |
logger.info(" Num Epochs = %d", args.num_train_epochs) | |
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) | |
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d", | |
args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1)) | |
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) | |
logger.info(" Total optimization steps = %d", t_total) | |
global_step = 0 | |
tr_loss, logging_loss = 0.0, 0.0 | |
model_sf.zero_grad() | |
# model_sf = model_sf.module if hasattr(model_sf, 'module') else model_sf # Take care of distributed/parallel training | |
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]) | |
n_iter = int(args.num_train_epochs) * len(train_dataloader) | |
beta_t_list = frange_cycle_zero_linear(n_iter, start=args.beta, stop=args.beta, n_cycle=1, ratio_increase=args.ratio_increase, ratio_zero=args.ratio_zero) | |
tmp_list = [] | |
set_seed(args) # Added here for reproducibility (even between python 2 and 3) | |
for epoch in train_iterator: | |
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) | |
for step, batch in enumerate(epoch_iterator): | |
# if step > 5: | |
# break | |
input_ids_bert_ctx, input_ids_bert, input_ids_gpt, token_lengths = batch | |
# if token_lengths[0,0]>512: | |
# input_ids_bert_ctx = input_ids_bert_ctx[0,:512].unsqueeze(0) | |
# if token_lengths[0,1]>512: | |
# input_ids_bert_ctx = input_ids_bert_ctx[0,:512].unsqueeze(0) | |
#logger.info(f'Conxtext in Bert, Length {token_lengths[0]} ; Tokens: {input_ids_bert_ctx}') | |
#logger.info(f'Response in Bert, Length {token_lengths[1]} ; Tokens: {input_ids_bert}') | |
#logger.info(f'Response in GPT2, Length {token_lengths[2]} ; Tokens: {input_ids_gpt}') | |
#pdb.set_trace() | |
model_sf.train() | |
beta_t = beta_t_list[step + epoch*len(epoch_iterator)] | |
model_sf.module.args.beta = beta_t | |
""" | |
xiag: not sure about fb_mode yet | |
if beta_t == 0.0: | |
model_sf.args.fb_mode = 0 | |
else: | |
model_sf.args.fb_mode = 1 | |
if args.use_deterministic_connect: | |
model_sf.args.fb_mode = 2 | |
""" | |
input_ids_bert_ctx = input_ids_bert_ctx.to(args.device) | |
input_ids_bert = input_ids_bert.to(args.device) | |
input_ids_gpt = input_ids_gpt.to(args.device) | |
loss_rec, loss_kl, loss = model_sf(input_ids_bert_ctx, input_ids_bert, input_ids_gpt) | |
# the following is copied from run_lm_vae_pretraining.py | |
# Chunyuan: loss_rec size is [4], while latent_z size is [12] | |
if args.n_gpu > 1: | |
loss_rec = loss_rec.mean() # mean() to average on multi-gpu parallel training | |
loss_kl = loss_kl.mean() | |
loss = loss.mean() | |
if args.use_philly: | |
print("PROGRESS: {}%".format(round(100 * (step + epoch*len(epoch_iterator) ) /(int(args.num_train_epochs) * len(epoch_iterator)) , 4))) | |
print("EVALERR: {}%".format(loss_rec)) | |
epoch_iterator.set_description( | |
( | |
f'iter: {step + epoch*len(epoch_iterator) }; loss: {loss.mean().item():.3f}; ' | |
f'loss_rec: {loss_rec.mean().item():.3f}; loss_kl: {loss_kl.mean().item():.3f}; ' | |
f'beta: {model_sf.module.args.beta:.3f}' | |
) | |
) | |
if global_step % 5 == 0: | |
row = { | |
'PartitionKey': 'MILU_Rule_Rule_Template', | |
'RowKey': str(datetime.now()), | |
'ExpName' : args.ExpName, | |
'iter': str( step + epoch*len(epoch_iterator) ), | |
'loss': str( loss.mean().item()), | |
'loss_rec': str(loss_rec.mean().item()), | |
'loss_kl': str(loss_kl.mean().item()), | |
'beta': str(model_sf.module.args.beta) | |
} | |
# pdb.set_trace() | |
#ts.insert_entity(table_name, row) | |
# pdb.set_trace() | |
if args.gradient_accumulation_steps > 1: | |
loss = loss / args.gradient_accumulation_steps | |
if args.fp16: | |
with amp.scale_loss(loss, optimizer) as scaled_loss: | |
scaled_loss.backward() | |
else: | |
loss = loss.mean() | |
loss.backward() | |
tr_loss += loss.item() | |
if (step + 1) % args.gradient_accumulation_steps == 0: | |
if args.fp16: | |
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) | |
else: | |
torch.nn.utils.clip_grad_norm_(model_sf.parameters(), args.max_grad_norm) | |
optimizer.step() | |
scheduler.step() # Update learning rate schedule | |
model_sf.zero_grad() | |
global_step += 1 | |
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: | |
# Log metrics | |
if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well | |
results = evaluate(args, model_sf, encoder_tokenizer, decoder_tokenizer) | |
for key, value in results.items(): | |
tb_writer.add_scalar('eval_{}'.format(key), value, global_step) | |
tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step) | |
tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step) | |
logging_loss = tr_loss | |
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: | |
# Save encoder model checkpoint | |
output_encoder_dir = os.path.join(args.output_dir, 'checkpoint-encoder-{}'.format(global_step)) | |
if not os.path.exists(output_encoder_dir): | |
os.makedirs(output_encoder_dir) | |
model_encoder_to_save = model_sf.module.encoder if hasattr(model_sf, 'module') else model_sf.encoder # Take care of distributed/parallel training | |
if args.use_philly: | |
save_solid = False | |
while not save_solid: | |
try: | |
model_encoder_to_save.save_pretrained(output_encoder_dir) | |
torch.save(args, os.path.join(output_encoder_dir, 'training_args.bin')) | |
logger.info("Saving model checkpoint to %s", output_encoder_dir) | |
save_solid = True | |
except: | |
pass | |
else: | |
model_encoder_to_save.save_pretrained(output_encoder_dir) | |
torch.save(args, os.path.join(output_encoder_dir, 'training_args.bin')) | |
logger.info("Saving model checkpoint to %s", output_encoder_dir) | |
# Save decoder model checkpoint | |
output_decoder_dir = os.path.join(args.output_dir, 'checkpoint-decoder-{}'.format(global_step)) | |
if not os.path.exists(output_decoder_dir): | |
os.makedirs(output_decoder_dir) | |
model_decoder_to_save = model_sf.module.decoder if hasattr(model_sf, 'module') else model_sf.decoder # Take care of distributed/parallel training | |
if args.use_philly: | |
save_solid = False | |
while not save_solid: | |
try: | |
model_decoder_to_save.save_pretrained(output_decoder_dir) | |
torch.save(args, os.path.join(output_decoder_dir, 'training_args.bin')) | |
logger.info("Saving model checkpoint to %s", output_decoder_dir) | |
save_solid = True | |
except: | |
pass | |
else: | |
model_decoder_to_save.save_pretrained(output_decoder_dir) | |
torch.save(args, os.path.join(output_decoder_dir, 'training_args.bin')) | |
logger.info("Saving model checkpoint to %s", output_decoder_dir) | |
if args.max_steps > 0 and global_step > args.max_steps: | |
epoch_iterator.close() | |
break | |
if args.max_steps > 0 and global_step > args.max_steps: | |
train_iterator.close() | |
break | |
if args.local_rank in [-1, 0]: | |
tb_writer.close() | |
return global_step#, tr_loss / global_step | |
def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')): | |
""" Filter a distribution of logits using top-k and/or nucleus (top-p) filtering | |
Args: | |
logits: logits distribution shape (vocabulary size) | |
top_k > 0: keep only top k tokens with highest probability (top-k filtering). | |
top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). | |
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) | |
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 | |
""" | |
assert logits.dim() == 1 # batch size 1 for now - could be updated for more but the code would be less clear | |
top_k = min(top_k, logits.size(-1)) # Safety check | |
if top_k > 0: | |
# Remove all tokens with a probability less than the last token of the top-k | |
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] | |
logits[indices_to_remove] = filter_value | |
if top_p > 0.0: | |
sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) | |
# Remove tokens with cumulative probability above the threshold | |
sorted_indices_to_remove = cumulative_probs > top_p | |
# Shift the indices to the right to keep also the first token above the threshold | |
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() | |
sorted_indices_to_remove[..., 0] = 0 | |
indices_to_remove = sorted_indices[sorted_indices_to_remove] | |
logits[indices_to_remove] = filter_value | |
return logits | |
def top_k_top_p_filtering_mb(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')): | |
""" Filter a distribution of logits using top-k and/or nucleus (top-p) filtering | |
Args: | |
logits: logits distribution shape (vocabulary size) | |
top_k > 0: keep only top k tokens with highest probability (top-k filtering). | |
top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). | |
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) | |
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 | |
""" | |
top_k = min(top_k, logits.size(-1)) # Safety check | |
if top_k > 0: | |
# Remove all tokens with a probability less than the last token of the top-k | |
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] | |
logits[indices_to_remove] = filter_value | |
if top_p > 0.0: | |
sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) | |
# Remove tokens with cumulative probability above the threshold | |
sorted_indices_to_remove = cumulative_probs > top_p | |
# Shift the indices to the right to keep also the first token above the threshold | |
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() | |
sorted_indices_to_remove[..., 0] = 0 | |
# scatter sorted tensors to original indexing | |
indices_to_remove = sorted_indices_to_remove.scatter(dim=1, index=sorted_indices, src=sorted_indices_to_remove) | |
logits[indices_to_remove] = filter_value | |
return logits | |
def sample_sequence_conditional(model, length, context, past=None, num_samples=1, temperature=1, top_k=0, top_p=0.0, device='cpu', decoder_tokenizer=None): | |
generated = context | |
with torch.no_grad(): | |
while True: | |
# for _ in trange(length): | |
inputs = {'input_ids': generated, 'past': past} | |
outputs = model(**inputs) # Note: we could also use 'past' with GPT-2/Transfo-XL/XLNet (cached hidden-states) | |
next_token_logits = outputs[0][:, -1, :] / temperature | |
filtered_logits = top_k_top_p_filtering_mb(next_token_logits, top_k=top_k, top_p=top_p) | |
next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1) | |
generated = torch.cat((generated, next_token), dim=1) | |
# pdb.set_trace() | |
if next_token.unsqueeze(0)[0,0].item() == decoder_tokenizer.encode('<EOS>')[0] or generated.shape[1] > length : | |
break | |
# gpt_eos_id = decoder_tokenizer.encode('<EOS>')[0] | |
# idx = (generated == gpt_eos_id).nonzero().squeeze() | |
# pdb.set_trace() | |
return generated | |
def evaluate(args, model_sf, encoder_tokenizer, decoder_tokenizer, table_name, prefix="", subset="test"): | |
# Loop to handle MNLI double evaluation (matched, mis-matched) | |
eval_output_dir = args.output_dir | |
logger.info("***** Running evaluation on {} dataset *****".format(subset)) | |
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: | |
os.makedirs(eval_output_dir) | |
# args.per_gpu_eval_batch_size = 1 | |
args.n_gpu = 1 | |
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) | |
eval_dataloader = build_dataload_and_cache_examples(args, [encoder_tokenizer, decoder_tokenizer], evaluate=True) | |
# Eval! | |
logger.info("***** Running evaluation {} *****".format(prefix)) | |
logger.info(" Num examples = %d", len(eval_dataloader)) | |
logger.info(" Batch size = %d", args.eval_batch_size) | |
model_sf.eval() | |
count = 0 | |
result = [] | |
epoch_iterator = tqdm(eval_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) | |
for step, batch in enumerate(epoch_iterator): | |
input_ids_bert_ctx, input_ids_bert, input_ids_gpt, token_lengths = batch | |
input_ids_bert_ctx = input_ids_bert_ctx.to(args.device) | |
input_ids_bert = input_ids_bert.to(args.device) | |
input_ids_gpt = input_ids_gpt.to(args.device) | |
if len(input_ids_bert_ctx[0,:])>512: | |
input_ids_bert_ctx = input_ids_bert_ctx[0,-512:].unsqueeze(0) | |
# else: | |
# continue | |
# pdb.set_trace() | |
# if step == 0: | |
# input_ids_bert_ctx_previous = input_ids_bert_ctx | |
# else: | |
# # pdb.set_trace() | |
# if (input_ids_bert_ctx_previous.shape == input_ids_bert_ctx.shape) and torch.eq(input_ids_bert_ctx_previous, input_ids_bert_ctx)[0].type(torch.float).mean().item() == 1.0: | |
# continue | |
# else: | |
# input_ids_bert_ctx_previous = input_ids_bert_ctx | |
# print(step) | |
context_tokens = decoder_tokenizer.encode('<BOS>') | |
context_tokens = torch.tensor(context_tokens, dtype=torch.long, device=args.device) | |
context_tokens = context_tokens.unsqueeze(0).repeat(token_lengths.shape[0], 1) | |
with torch.no_grad(): | |
text_src = encoder_tokenizer.decode(input_ids_bert_ctx[0,:].tolist(), clean_up_tokenization_spaces=False) | |
text_src = "".join(text_src) | |
text_ref = encoder_tokenizer.decode(input_ids_bert[0,:].tolist(), clean_up_tokenization_spaces=False) | |
text_ref = "".join(text_ref) | |
for i in range(args.sents_per_cxt): | |
latent_z = model_sf.sent2latent(input_ids_bert_ctx) | |
out = sample_sequence_conditional( | |
model=model_sf.decoder, | |
context=context_tokens, | |
past=latent_z, | |
length=256, # Chunyuan: Fix length; or use <EOS> to complete a sentence | |
temperature=args.temperature, | |
top_k=args.top_k, | |
top_p=args.top_p, | |
device=args.device, | |
decoder_tokenizer = decoder_tokenizer | |
) | |
text_hpy = decoder_tokenizer.decode(out[0,:].tolist(), clean_up_tokenization_spaces=False) | |
text_hpy = text_hpy.split()[1:-1] | |
text_hpy = ' '.join(text_hpy) + '\n' | |
textline = "\t".join([text_src, text_ref, text_hpy]) | |
# pdb.set_trace() | |
result.append(textline) | |
epoch_iterator.set_description( | |
( | |
f'step: {step}' | |
) | |
) | |
count += 1 | |
if args.total_sents>0 and count>args.total_sents: | |
break | |
output_eval_file = os.path.join(eval_output_dir, "eval_text_generation_results.txt") | |
with open(output_eval_file, "w") as writer: | |
logger.info("***** Eval results {} *****".format(prefix)) | |
for res in result: | |
# logger.info("%s \n" % res) | |
writer.write("%s \n" % res) | |
return result | |
def main(): | |
parser = argparse.ArgumentParser() | |
## Required parameters | |
parser.add_argument("--train_data_file", default=None, type=str, required=True, | |
help="The input training data file (a text file).") | |
parser.add_argument("--output_dir", default=None, type=str, required=True, | |
help="The output directory where the model predictions and checkpoints will be written.") | |
parser.add_argument("--dataset", default=None, type=str, help="The dataset.") | |
parser.add_argument("--checkpoint_dir", default=None, type=str, required=True, | |
help="The directory where checkpoints are saved.") | |
## Other parameters | |
parser.add_argument("--eval_data_file", default=None, type=str, | |
help="An optional input evaluation data file to run text generation.") | |
parser.add_argument("--eval_generated_text_file", default=None, type=str, | |
help="An optional input evaluation data file to evaluate the perplexity on (a generated text file).") | |
parser.add_argument("--ExpName", default="", type=str, | |
help="The experiment name used in Azure Table.") | |
## Encoder options | |
parser.add_argument("--encoder_model_type", default="bert", type=str, | |
help="The encoder model architecture to be fine-tuned.") | |
parser.add_argument("--encoder_model_name_or_path", default="bert-base-uncased", type=str, | |
help="The encoder model checkpoint for weights initialization.") | |
parser.add_argument("--encoder_config_name", default="", type=str, | |
help="Optional pretrained config name or path if not the same as model_name_or_path") | |
parser.add_argument("--encoder_tokenizer_name", default="", type=str, | |
help="Optional pretrained tokenizer name or path if not the same as model_name_or_path") | |
## Decoder options | |
parser.add_argument("--decoder_model_type", default="gpt2", type=str, | |
help="The decoder model architecture to be fine-tuned.") | |
parser.add_argument("--decoder_model_name_or_path", default="gpt2", type=str, | |
help="The decoder model checkpoint for weights initialization.") | |
parser.add_argument("--decoder_config_name", default="", type=str, | |
help="Optional pretrained config name or path if not the same as model_name_or_path") | |
parser.add_argument("--decoder_tokenizer_name", default="", type=str, | |
help="Optional pretrained tokenizer name or path if not the same as model_name_or_path") | |
## Space Fusion | |
parser.add_argument("--latent_size", default=32, type=int, help="Latent space dimension.") | |
parser.add_argument("--use_deterministic_connect", action='store_true', | |
help="Use deterministic inference to generate latent codes, i.e., standard auto-encoders.") | |
parser.add_argument("--use_pretrained_model", action='store_true', | |
help="Use pre-trained auto-encoder models as the initialization") | |
parser.add_argument("--use_pretrained_vae", action='store_true', | |
help="Use use_pretrained_vae as initialization, where beta value is specified in the folder") | |
parser.add_argument("--num_s2s_bert_layer", default=1, type=int, help="Number of BERT layer used for S2S loass in space fusion.") | |
parser.add_argument("--num_frozen_bert_layer", default=11, type=int, help="Number of BERT layer used for S2S loass in space fusion") | |
parser.add_argument('--freeze_bert', action='store_true') | |
parser.add_argument('--n_pnt', type=int, default=200) | |
parser.add_argument('--path_ids', type=str, default='dailydialog_data_1000.pt') | |
## Objective functions | |
parser.add_argument("--mlm", action='store_true', | |
help="Train with masked-language modeling loss instead of language modeling.") | |
parser.add_argument("--mlm_probability", type=float, default=0.15, | |
help="Ratio of tokens to mask for masked language modeling loss") | |
parser.add_argument("--beta", type=float, default=1.0, | |
help="The weighting hyper-parameter of the KL term in VAE") | |
parser.add_argument("--cache_dir", default="", type=str, | |
help="Optional directory to store the pre-trained models downloaded from s3 (instread of the default one)") | |
parser.add_argument("--max_seq_length", default=512, type=int, | |
help="Optional input sequence length before tokenization. The sequence will be dropped if it is longer the max_seq_length") | |
parser.add_argument("--block_size", default=-1, type=int, | |
help="Optional input sequence length after tokenization." | |
"The training dataset will be truncated in block of this size for training." | |
"Default to the model max input length for single sentence inputs (take into account special tokens).") | |
parser.add_argument("--do_train", action='store_true', | |
help="Whether to run training.") | |
parser.add_argument("--do_generation", action='store_true', | |
help="Whether to run text generation on the dev set.") | |
parser.add_argument("--do_eval", action='store_true', | |
help="Whether to run eval on the dev set.") | |
parser.add_argument("--do_vis", action='store_true', | |
help="Whether to run visualization on the latent space.") | |
parser.add_argument("--evaluate_during_training", action='store_true', | |
help="Run evaluation during training at each logging step.") | |
parser.add_argument("--do_lower_case", action='store_true', | |
help="Set this flag if you are using an uncased model.") | |
# Training Schedules | |
parser.add_argument("--ratio_increase", default=0.25, type=float, | |
help="Learning schedule, the percentage for the annealing stage.") | |
parser.add_argument("--ratio_zero", default=0.25, type=float, | |
help="Learning schedule, the percentage for the pure auto-encoding stage.") | |
parser.add_argument("--fb_mode", default=0, type=int, | |
help="free bit training mode.") | |
parser.add_argument("--dim_target_kl", default=3.0, type=float, | |
help="dim_target_kl free bit training mode.") | |
parser.add_argument("--per_gpu_train_batch_size", default=4, type=int, | |
help="Batch size per GPU/CPU for training.") | |
parser.add_argument("--per_gpu_eval_batch_size", default=1, type=int, | |
help="Batch size per GPU/CPU for evaluation.") | |
parser.add_argument('--gradient_accumulation_steps', type=int, default=1, | |
help="Number of updates steps to accumulate before performing a backward/update pass.") | |
parser.add_argument("--learning_rate", default=5e-5, type=float, | |
help="The initial learning rate for Adam.") | |
parser.add_argument("--weight_decay", default=0.0, type=float, | |
help="Weight deay if we apply some.") | |
parser.add_argument("--adam_epsilon", default=1e-8, type=float, | |
help="Epsilon for Adam optimizer.") | |
parser.add_argument("--max_grad_norm", default=1.0, type=float, | |
help="Max gradient norm.") | |
parser.add_argument("--num_train_epochs", default=1.0, type=float, | |
help="Total number of training epochs to perform.") | |
parser.add_argument("--max_steps", default=-1, type=int, | |
help="If > 0: set total number of training steps to perform. Override num_train_epochs.") | |
parser.add_argument("--warmup_steps", default=0, type=int, | |
help="Linear warmup over warmup_steps.") | |
parser.add_argument("--use_philly", action='store_true', | |
help="Use Philly for computing.") | |
## IO: Logging and Saving | |
parser.add_argument('--logging_steps', type=int, default=50, | |
help="Log every X updates steps.") | |
parser.add_argument('--save_steps', type=int, default=50, | |
help="Save checkpoint every X updates steps.") | |
parser.add_argument("--eval_all_checkpoints", action='store_true', | |
help="Evaluate all checkpoints starting with the same prefix as model_name_or_path ending and ending with step number") | |
parser.add_argument("--no_cuda", action='store_true', | |
help="Avoid using CUDA when available") | |
parser.add_argument('--overwrite_output_dir', action='store_true', | |
help="Overwrite the content of the output directory") | |
parser.add_argument('--overwrite_cache', action='store_true', | |
help="Overwrite the cached training and evaluation sets") | |
parser.add_argument('--seed', type=int, default=42, | |
help="random seed for initialization") | |
parser.add_argument('--gloabl_step_eval', type=int, default=661, | |
help="Evaluate the results at the given global step") | |
# Text Generation | |
parser.add_argument("--temperature", type=float, default=1.0) | |
parser.add_argument("--top_k", type=int, default=0) | |
parser.add_argument("--top_p", type=float, default=0.9) | |
parser.add_argument("--total_sents", default=10, type=int, help="Total sentences to test recontruction.") | |
parser.add_argument("--sents_per_cxt", default=10, type=int, help="Number of responses to generate for a given context.") | |
# Precision & Distributed Training | |
parser.add_argument('--fp16', action='store_true', | |
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit") | |
parser.add_argument('--fp16_opt_level', type=str, default='O1', | |
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." | |
"See details at https://nvidia.github.io/apex/amp.html") | |
parser.add_argument("--local_rank", type=int, default=-1, | |
help="For distributed training: local_rank") | |
parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.") | |
parser.add_argument('--server_port', type=str, default='', help="For distant debugging.") | |
args = parser.parse_args() | |
if args.decoder_model_type in ["bert", "roberta"] and not args.mlm: | |
raise ValueError("BERT and RoBERTa do not have LM heads but masked LM heads. They must be run using the --mlm " | |
"flag (masked language modeling).") | |
if args.eval_data_file is None and args.do_eval: | |
raise ValueError("Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file " | |
"or remove the --do_eval argument.") | |
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir: | |
raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir)) | |
# Setup distant debugging if needed | |
if args.server_ip and args.server_port: | |
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script | |
import ptvsd | |
print("Waiting for debugger attach") | |
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) | |
ptvsd.wait_for_attach() | |
# Setup CUDA, GPU & distributed training | |
if args.local_rank == -1 or args.no_cuda: | |
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") | |
args.n_gpu = torch.cuda.device_count() | |
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs | |
torch.cuda.set_device(args.local_rank) | |
device = torch.device("cuda", args.local_rank) | |
torch.distributed.init_process_group(backend='nccl') | |
args.n_gpu = 1 | |
args.device = device | |
# Setup logging | |
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', | |
datefmt = '%m/%d/%Y %H:%M:%S', | |
level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN) | |
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", | |
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16) | |
args.ExpName = 'Vae_' + args.dataset + '_Nz_' + str(args.latent_size) + '_Beta_' + str(args.beta) + '_Dkl_' + str(args.dim_target_kl) + '_Ra_' + str(args.ratio_increase) + '_R0_' + str(args.ratio_zero) | |
table_name = 'Vae' + args.dataset + 'Nz' + str(args.latent_size) | |
try: | |
ts.create_table(table_name) | |
except: | |
pass | |
# Set seed | |
set_seed(args) | |
# Load pretrained model and tokenizer | |
if args.local_rank not in [-1, 0]: | |
torch.distributed.barrier() # Barrier to make sure only the first process in distributed training download model & vocab | |
if args.do_train or args.do_generation or args.do_vis: | |
if args.use_pretrained_model: | |
args.encoder_model_type = args.encoder_model_type.lower() | |
args.decoder_model_type = args.decoder_model_type.lower() | |
global_step = args.gloabl_step_eval | |
if args.use_pretrained_vae: | |
output_encoder_dir = os.path.join(args.checkpoint_dir, 'checkpoint-encoder-{}-1.0'.format(global_step)) | |
output_decoder_dir = os.path.join(args.checkpoint_dir, 'checkpoint-decoder-{}-1.0'.format(global_step)) | |
else: | |
output_encoder_dir = os.path.join(args.checkpoint_dir, 'checkpoint-encoder-{}'.format(global_step)) | |
output_decoder_dir = os.path.join(args.checkpoint_dir, 'checkpoint-decoder-{}'.format(global_step)) | |
checkpoints = [ [output_encoder_dir, output_decoder_dir] ] | |
logger.info("Evaluate the following checkpoints: %s", checkpoints) | |
# Load a trained Encoder model and vocabulary | |
encoder_config_class, encoder_model_class, encoder_tokenizer_class = MODEL_CLASSES[args.encoder_model_type] | |
model_encoder = encoder_model_class.from_pretrained(output_encoder_dir, latent_size=args.latent_size) | |
tokenizer_encoder = encoder_tokenizer_class.from_pretrained(args.encoder_tokenizer_name if args.encoder_tokenizer_name else args.encoder_model_name_or_path, do_lower_case=args.do_lower_case) | |
model_encoder.to(args.device) | |
if args.block_size <= 0: | |
args.block_size = tokenizer_encoder.max_len_single_sentence # Our input block size will be the max possible for the model | |
args.block_size = min(args.block_size, tokenizer_encoder.max_len_single_sentence) | |
# Load a trained Decoder model and vocabulary | |
decoder_config_class, decoder_model_class, decoder_tokenizer_class = MODEL_CLASSES[args.decoder_model_type] | |
model_decoder = decoder_model_class.from_pretrained(output_decoder_dir, latent_size=args.latent_size) | |
tokenizer_decoder = decoder_tokenizer_class.from_pretrained(args.decoder_tokenizer_name if args.decoder_tokenizer_name else args.decoder_model_name_or_path, do_lower_case=args.do_lower_case) | |
model_decoder.to(args.device) | |
if args.block_size <= 0: | |
args.block_size = tokenizer_decoder.max_len_single_sentence # Our input block size will be the max possible for the model | |
args.block_size = min(args.block_size, tokenizer_decoder.max_len_single_sentence) | |
else: | |
## Encoder | |
encoder_config_class, encoder_model_class, encoder_tokenizer_class = MODEL_CLASSES[args.encoder_model_type] | |
encoder_config = encoder_config_class.from_pretrained(args.encoder_config_name if args.encoder_config_name else args.encoder_model_name_or_path) | |
tokenizer_encoder = encoder_tokenizer_class.from_pretrained(args.encoder_tokenizer_name if args.encoder_tokenizer_name else args.encoder_model_name_or_path, do_lower_case=args.do_lower_case) | |
if args.block_size <= 0: | |
args.block_size = tokenizer_encoder.max_len_single_sentence # Our input block size will be the max possible for the model | |
args.block_size = min(args.block_size, tokenizer_encoder.max_len_single_sentence) | |
model_encoder = encoder_model_class.from_pretrained(args.encoder_model_name_or_path, from_tf=bool('.ckpt' in args.encoder_model_name_or_path), config=encoder_config, latent_size=args.latent_size) | |
# model_encoder.to(args.device) | |
## Decoder | |
decoder_config_class, decoder_model_class, decoder_tokenizer_class = MODEL_CLASSES[args.decoder_model_type] | |
decoder_config = decoder_config_class.from_pretrained(args.decoder_config_name if args.decoder_config_name else args.decoder_model_name_or_path) | |
tokenizer_decoder = decoder_tokenizer_class.from_pretrained(args.decoder_tokenizer_name if args.decoder_tokenizer_name else args.decoder_model_name_or_path, do_lower_case=args.do_lower_case) | |
if args.block_size <= 0: | |
args.block_size = tokenizer_decoder.max_len_single_sentence # Our input block size will be the max possible for the model | |
args.block_size = min(args.block_size, tokenizer_decoder.max_len_single_sentence) | |
setattr(decoder_config, "latent_size", args.latent_size) | |
model_decoder = decoder_model_class.from_pretrained(args.decoder_model_name_or_path, from_tf=bool('.ckpt' in args.decoder_model_name_or_path), config=decoder_config, latent_size=args.latent_size, latent_as_gpt_emb=False) | |
# Chunyuan: Add Padding token to GPT2 | |
special_tokens_dict = {'pad_token': '<PAD>', 'bos_token': '<BOS>', 'eos_token': '<EOS>'} | |
num_added_toks = tokenizer_decoder.add_special_tokens(special_tokens_dict) | |
print('We have added', num_added_toks, 'tokens to GPT2') | |
model_decoder.resize_token_embeddings(len(tokenizer_decoder)) # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e. the length of the tokenizer. | |
assert tokenizer_decoder.pad_token == '<PAD>' | |
model_sf = SpaceFusion(model_encoder, model_decoder, tokenizer_encoder, tokenizer_decoder, args).to(args.device) # | |
if args.local_rank == 0: | |
torch.distributed.barrier() # End of barrier to make sure only the first process in distributed training download model & vocab | |
logger.info("Training/evaluation parameters %s", args) | |
# Training | |
if args.do_train: | |
global_step= 0 | |
if args.local_rank not in [-1, 0]: | |
torch.distributed.barrier() # Barrier to make sure only the first process in distributed training process the dataset, and the others will use the cache | |
train_dataloader = build_dataload_and_cache_examples(args, [tokenizer_encoder, tokenizer_decoder], evaluate=False) | |
if args.local_rank == 0: | |
torch.distributed.barrier() | |
global_step = train(args, train_dataloader, model_sf, tokenizer_encoder, tokenizer_decoder, table_name) | |
logger.info(" global_step = %s", global_step) | |
# Text Generation based on a trained model | |
if args.do_generation and args.local_rank in [-1, 0]: | |
results = {} | |
model_sf = SpaceFusion(model_encoder, model_decoder, tokenizer_encoder, tokenizer_decoder, args).to(args.device) # | |
result = evaluate(args, model_sf, tokenizer_encoder, tokenizer_decoder, table_name, prefix=global_step, subset='test') | |
# Evaluation | |
if args.do_eval and args.local_rank in [-1, 0]: | |
if args.dataset == "dailydialog": | |
results = eval_dialog_response(args.eval_generated_text_file) | |
else: | |
results = eval_multi_ref(args.eval_generated_text_file, args.eval_data_file) | |
output_eval_file = os.path.join(args.output_dir, "eval_results.txt") | |
with open(output_eval_file, "w") as writer: | |
logger.info("***** Eval results *****") | |
for key in sorted(results.keys()): | |
logger.info("%s = %s", key, str(results[key])) | |
writer.write("%s = %s\n" % (key, str(results[key]))) | |
# Visualization of the latent space | |
if args.do_vis and args.local_rank in [-1, 0]: | |
print('>'*10 + ' loading ids') | |
ids = torch.load(args.path_ids) | |
inputs_src = ids['input_ids_bert_ctx'] | |
inputs_tgt = ids['input_ids_bert'] | |
model_sf = SpaceFusion(model_encoder, model_decoder, tokenizer_encoder, tokenizer_decoder, args).to(args.device) # | |
visual2D(args, model_sf, inputs_src, inputs_tgt, n=args.n_pnt) | |
if __name__ == "__main__": | |
main() |